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The material:

» Upper bounds on number of real roots for certain sparse
polynomial systems.

» Depth reduction for arithmetic circuits.

The motivating problem:
What is the arithmetic complexity of the permanent polynomial?

This is:
» An arithmetic version of P=NP (Valiant'79).

» Roughly equivalent to determinant versus permanent.
Reminder: per(X) = > s [[iL; Xio(i)-



Determinant versus permanent (1/2)

Representing a permanent by a determinant:
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The general case: A permanent of size n can be represented
by a determinant of size 2" — 1 (B. Grenet).

Determinant versus permanent (2/2)

Conjecture:
If per(A) = det(B) then size(B) cannot be polynomial in size(A).
The entries of B can be either:

» Entries of A, or constants.
» Affine functions of the entries of A.

Remark: These 2 versions of the conjecture are equivalent:
det(affine functions) — det(variables or constants).
Some work toward the conjecture:

> size(B) > size(A)?/2 (Mignon and Ressayre, 2004).

» Geometric Complexity Theory:
an approach based on representation theory
(Ketan Mulmuley / Milind Sohoni + Biirgisser, Kumar,
Landsberg, Manivel, Ressayre, Weyman...).

» Today's approach is based on sparse polynomials,
and uses the completeness of the permanent.



Arithmetic circuits:
Toward an arithmetic version of P versus NP

Xy %@0@@

Circuit
Size: 9
Depth: 3

Valiant's model: VPx = VNPg 7

» Complexity of a polynomial f measured by number L(f)
of arithmetic operations (+,-,x) needed to evaluate f:

L(f) = size of smallest arithmetic circuit computing f.

> (f,) € VP if number of variables, deg(f,) and L(f,)
are polynomially bounded.

Two examples: the determinant family (det,) is in VP,
but (X2")&VP.

> (f,) € VNP if f,(X) = Zgn(x y)

for some (g,) € VP

(sum ranges over all boolean values of y).

Example:

If char(K) # 2 the permanent is a VNP-complete family.




Overview of the tutorial

1. Depth reduction for arithmetic circuits:

» Reduction to depth O(log n) for arithmetic formulas
(Muller-Preparata’76).
» Reduction to depth O(log®n) for low-degree circuits
(Valiant-Skyum-Berkowitz-Rackoff'83).
» Reduction to depth 4 for low-degree circuits
(Agrawal-Vinay, 2008).
2. The real T-conjecture:
a connection between sparse polynomials
and lower bounds for the permanent.

3. Upper bound on the number of real roots.

Sparse polynomials: a glimpse of part 3

» Descartes’ rule without signs:
If £ has t monomials then f at most t — 1 positive real roots.

» Khovanskii's theory of fewnomials: a system

f(x1, -y xn) = fa(xt,...,xp) = =fa(x1,...,xp) =0

with t distinct exponent vectors has at most (n + 1)'32“’-“—1)/2
non-degenerate roots in the positive orthant.

» For certain sparse systems,
the Wronskian determinant leads to better bounds.

A take-home problem:

How many real solutions to the univariate equation fg =17
Descartes’ bound is O(t?) but true bound could be O(t).
Remark: fg =1 can be re-written as [y = f(x), y.g(x) = 0].



Weakly Skew Circuits

For each multiplication gate a := 3 x ~:
Cgor C, is mdependent from the remainder of the circuit.

If a gate is not in an independent subcircuit it is reusable.

Skew Circuits

For each multiplication gate a := (8 X 7:
f or v is an input.

@@\
N

Skew Circuits € Weakly Skew Circuits,
and Arithmetic Formulas (Trees) C Weakly Skew Circuits.



(Weakly) Skew Circuits and the Determinant

Weakly skew circuits capture the complexity of the determinant.

Theorem (Toda92)
The determinant can be computed by:
» Weakly skew circuits of size O(n").

» Skew circuits of size O(n?Y).

Proof based on Berkowitz's algorithm.

Theorem (Toda92,Malod03)

A weakly skew circuit of size t has an equivalent determinant
(and permanent) of size t + 1.

Applications

» Closure properties of the determinant:

1. Stability under polynomial size summation
[Malod - Portier'06-08]

2. Stability under exact quotient [Kaltofen - Koiran'08]
3. det(affine functions) — det(variables or constants).
Proof: convert determinants into weakly skew circuits,

convert back final result into determinant form.

» Expressive power of determinants of symmetric matrices
[Grenet-Kaltofen-Koiran-Portier'11]



From Weakly Skew Circuit to Determinants (1/4)

An arithmetic branching programs is a dag
with two distinguished vertices s, t.

» edges labeled by variables or constants.

» weight of path = product of edge weights.
» output = w(s — t) = sum of the weights of all st-paths.

(Valiant'79, universality of per/det for arithmetic formulas.)

From Weakly Skew Circuit to Determinants (2/4)
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Invariant:

For each reusable gate «,
there exists t,, s.t.
w(s — to) = Pa.




From Weakly Skew Circuit to Determinants (3/4)
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From Weakly Skew Circuit to Determinants (4/4)

det
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perA = Z ﬁ Ai (i), detA= Z(_l)Sgn(a) ﬁ Ai (i)
i=1

o i=1 o

Permutation in A = cycle cover in G.
Up to signs, det A = sum of weights of cycle covers in G.



More on Skew versus Weakly Skew

Theorem (Kaltofen-Koiran'08, Jansen’'08)

A weakly skew circuit of size m has an equivalent skew circuit
of size 2m.

1. Construct equivalent arithmetic branching program G
of size m+ 1.

2. Compute inductively w(s — v) for each node v € G.

» Two predecessors vq, v» with unit edge weights:
w(s — v) =w(s — vi) + w(s — w).

» One predecessor v; with edge weight x:
w(s = v) =x X w(s = vp).

Parallelization of Weakly Skew Circuits

Theorem: Let G be an branching program of size m and depth 4.
There is an equivalent circuit of depth 2log 4,

with m3log § binary multiplication gates

and m? log 6 addition gates of unbounded fan-in.

Consequence: polynomial size weakly skew circuits
= polynomial size circuits of depth log? n
(with gates of fan-in 2).



Parallelization algorithm

Let M be the adjcacency matrix of G, add the loop My = 1.

From undergraduate graphs algorithms:
output(G) = (MP)s for any p > depth(G) = 4.
= Compute M? for i =0,...,log¥.

Squaring circuit:
depth 2, m3 multiplications, m? unbounded additions.

General circuits

Theorem|[Valiant - Skyum - Berkowitz - Rackoff 1983]:

Let C be a circuit of size s computing a polynomial f(xg, ..., xn)
of degree d.

There is an equivalent circuit of size O(d®s>) and depth
O(log(ds) log d + log n).

Consequence: VP C VNC? (same as for weakly skew!)

Refinements:

» Uniformity: Miller - Ramachandran - Kaltofen'36;
Allender - Mahajan - Jiao - Vinay'98.

» Multilinearity: Raz-Yehudayoff'08.



VP C VNC3

The formal degree:
» Multiplication gate: deg(f x g) = deg(f) + deg(g).
» Addition gate: deg(f + g) = max(deg(f),deg(g)).

Remark:
Formal degree can replace “actual degree” in definition of VP.

Theorem:

Let C be a circuit of size t and formal degree d.

There is an equivalent circuit C’ of depth O(logt - log d)
and size O(t3logt - log d).

Multiplications gates in C and C’ are assumed to be binary.

Remark: if all gates are binary, depth is of order log®.

Proof of VP C VNC3

Let C; be the “slice” {g : gate of C; deg(g) € [2/,2'T[}.
1. Ci is a (multi-output) circuit with inputs from the C; (j < /).
2. C;is skew: if deg(g1),deg(gr) > 2' then deg(gy x g) > 2/,

Replace each C; (i =0,...,logd)
by a circuit of depth 2log t and size O(t3 log t).



Reduction to depth 4 (XX formulas)

Theorem|[Agrawal-Vinay'08|:

Let P(x1,...,Xmn) be a polynomial of degree d = O(m).

If there exists an arithmetic circuit of size 2°(d+d18 ) for P,
then there exists a depth 4 arithmetic circuit of size 20(d+dlogg),

Corollary:
A multilinear polynomial in m variables with an arithmetic circuit
of size 2°(™) also has a depth 4 arithmetic circuit of size 2°(™).

This suggests to first prove lower bounds for depth 4 circuits.
Warning: For the n X n permanent, m = n? and d = n.

We already know (Ryser'63) that the permanent

has depth 3 formulas of size O(n2")!

Reduction to depth 4 for polynomial size circuits

Theorem:
Let C be an arithmetic circuit of size t and formal degree d.
There is an equivalent depth 4 circuit of size $O(Vdlogd)

Corollary:
If the permanent family (per,) is in VP,
then it has depth 4 circuits of size nO(Vnlogn)



From branching programs to depth 4 circuits

Theorem:

Let G be an arithmetic branching program of size m and depth 9.
There is an equivalent depth 4 circuit with m? + 1 addition gates
and mO(V9) multiplication gates.

Proof: recall output(G) = (MP)s for any p > 4.
1. Write M9 = (MY8)V3,
2. Write entries of N = MV as sums of mVo-1 monomials

(= multiplication gates are of arity v/§).
3. Repeat step 2 with matrix M replaced by N.

From general circuits to depth 4 circuits

Start from circuit C of size t and formal degree d,
with binary multiplication gates.

1. There is an equivalent branching program G
of size m = t'°¢29 1 and depth § = 3d — 1

2. Convert G into a depth 4 circuit of size mO(Vo),

Proof of step 1:

C — weakly skew circuit of size t'°629 (Malod)
— branching program of size 1 + t'°829:

some additional work for the depth bound.



The 7-Conjecture [Shub-Smale’95]

7(f) = length of smallest straight-line program for f € Z[X].
No constants are allowed.
Conjecture: f has at most 7(f)€ integer zeros (for a constant c).
Theorem [Shub-Smale’95]: 7-conjecture = P¢ # NP¢.
Theorem [Biirgisser’07]:

T-conjecture = no polynomial-size arithmetic circuits

for the permanent.
Remarks:

» What if constants are allowed?
» We must have ¢ > 2.

» Conjecture becomes false for real roots:
Chebyshev's polynomials, see also Borodin-Cook'76.

Chebyshev polynomials
» Let T, be the Chebyshev polynomial of order n:
cos(nf) = T,(cosb).

For instance Ti(x) = x, To(x) = 2x? — 1.
» T, is a degree n polynomial with n real zeros on [—1,1].
> Ton(x) = To(To(--- T2(T2(x))---)): n-th iterate of T».
As a result 7(Tan) = O(n).

Plots of T» and Ty4:
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The Real 7-Conjecture

Conjecture: Consider f(X) = Y"1, [T, f;(X),

where the fj; are t-sparse.

If f is nonzero, its number of real roots is polynomial in kmt.
Theorem: If the conjecture is true then the permanent is hard.
Remarks:

» It is enough to bound the number of integer roots.
Could techniques from real analysis be helpful?

» Case k = 1 of the conjecture follows from Descartes’ rule.
» By expanding the products, f has at most 2kt™ — 1 zeros.

» k =2 is open. An even more basic question
(courtesy of Arkadev Chattopadhyay):
how many real solutions to fg =17
Descartes’ bound is O(t?) but true bound could be O(t).

Descartes's rule without signs

Theorem:

If £ has t monomials then f at most t — 1 positive real roots.
Proof: Induction on t. No positive root for t = 1.

For t > 1: let a, X® = lowest degree monomial.

We can assume a = 0 (divide by X if not). Then:

(i) ' has t — 1 monomials = < t — 2 positive real roots.

(i) There is a positive root of f’ between 2 consecutive positive
roots of f (Rolle's theorem).



Real 7-Conjecture = Permanent is hard

The 2 main ingredients:

» The Pochhammer-Wilkinson polynomials:
PW,(X) =T1/=.(X —1).
Theorem [Biirgisser’07-09]: If the permanent is easy,
PW, has circuits size (log n)°(1).

» Reduction to depth 4 for arithmetic circuits
(Agrawal and Vinay, 2008).

The second ingredient: reduction to depth 4

Depth reduction theorem (Agrawal and Vinay, 2008):
Any multilinear polynomial in n variables with an arithmetic circuit
of size 2°(") also has a depth four (XMXM) circuit of size 2°(").

Our polynomials are far from multilinear, but:

Depth-4 circuit with inputs of the form X2i, or constants

(Shallow circuit with high-powered inputs)

0

Sum of Products of Sparse Polynomials




How the proof does not go

Assume by contradiction that the permanent is easy.
Goal:

Show that SPS polynomials of size 2°(") can compute []7,(X — i)
= contradiction with real 7-conjecture.

1. From assumption: leil(X — i) has circuits of polynomial in n
(Burgisser).
2. Reduction to depth 4 = SPS polynomials of size 2°(").
What's wrong with this argument:

No high-degree analogue of reduction to depth 4
(think of Chebyshev'’s polynomials).

How the proof goes (more or less)

Assume that the permanent is easy.
Goal:

Show that SPS polynomials of size 2°(") can compute []7,(X — /)
= contradiction with real 7-conjecture.

1. From assumption: Hil(X — i) has circuits of polynomial in n
(Biirgisser).

2. Reduction to depth 4 = SPS polynomials of size 2°(").

For step 2: need to use again the assumption that perm is easy.



The limited power of powering (a tractable special case)

What if the number of distinct f; is very small (even constant)?
. k Qjj

Consider f(X) =i [[Z; £ (X),

where the f; are t-sparse.

Theorem [with Grenet, Portier and Strozecki]:

If £ is nonzero, it has at most +0(m-2) raal roots.

Remarks:

» For this model we also give a permanent lower bound
and a polynomial identity testing algorithm (f =0 7).
See also [Agrawal-Saha-Saptharishi-Saxena, STOC'2012].

» Bounds from Khovanskii's theory of fewnomials are
exponential in k, m, t.

Today's result:

Theorem [with Portier and Tavenas]:

If £ is nonzero, it has at most tO(mk) real roots.
The main tool is...

The Wronskian

Definition: Let f,...,f. : | — R. Their Wronskian is the
determinant of the Wronskian matrix

[ f1 f> ce fk ]

£ £1 o ry

W(fi,...,f) =det | . ; ‘
(k) e e

» Linear dependence = W(f,...,f) = 0.
» Converse is not always true (Peano, 1889):
Let A1(x) = x?, f2(x) = x|x|. Then

2

B x* sign(x)x?] _
W(h, fo) = det [2X 2SigH(X)X] =0

» Converse is true for analytic functions (Bocher, 1900).



The Wronskian and Real Roots

Upper Bound Theorem: Assume that the k wronskians
W(ﬁ.)? W(fla f2)7 W(ﬁ.a f27 %)7 ceey W(fla sy fk)

have no zeros on /.

Let f = a1fi + - - - + akfx where a; # 0 for some .

Then f has at most kK — 1 zeros on I, counted with multiplicities.
Remark:

Connections between real roots and the Wronksian were known.
Typical application:

Divide R into intervals where the k wronskians have no zeros.
Case kK = 2:

1. If ao =0, f = a;f; has no zero on /.

2. If ap #0, write f = f1g where g = a1 + axf2/f1.
g/ = a2(f2’f1 — fzfll)/flz = 32W(f1, fz)/flz has no zero =
by Rolle's theorem, g has at most 1 zero, and f too.

Linear Dependence for Analytic Functions (1/3)

Theorem [Bocher]: If fi,...,fi : | — R are analytic

and W(f,,...,fx) =0, these functions are linearly dependent.
Proof: By induction on k. Pick J C | where f; 20. On J:

atfi + -4+ akfr =0
& a1+32(f2/ﬂ)+'°°+ak(fk/f1)EO
= 32(6/f1)/ + -4 ak(fk/fl)’ = 0. (>I<)

(*) follows from induction hypothesis and the recursive formula:

W(h,....f) = EW((R/A),....(f/R)).

To conclude: for analytic functions,
if f=a1f1+---+axfx =00n J, then f =0 on [.



Linear Dependence for Analytic Functions (2/3)

Lemma: W(flga f2g7 R fkg) — ng(fh f27 R fk)
For instance:

hg hg g
W(fig, he,g)=| (hg) (hg) (fg)"
(hg)" (Rg)" (hg)"

f fy fs
=g fig + fg’ f,8 + 28’ f;8 + 28’
h'g+2fig'+hg" H'g+26g +hg" fK'g+2g" + g
f f f3
=g fig g fig
h'g +2flg’ H'g+2fg HK'g+2fg
h f f3
=g i f fs = g’W(f, fr, f).

ﬁ_”g+2f;{g/ f2”g+2f2/g/ f3”g—|—2f;g/

Linear Dependence for Analytic Functions (3/3):
The Recursive Formula for the Wronskian

Proposition [Hesse - Christoffel - Frobenius]:

W(f,..., f) = flkW((fz/fl)’, (/).
From previous lemma:

1 h/h f3/f
W(fi, b, ) = FW(L, h/fi,. fi/h) = 7| 0 (B/A) (f/h)

0 (R/h)" (f/h)"

Hence

(R/A) (B/R) | _ / /
WL o, ) = 2| (e (g rpy | = RWIER/A) (B/A)).



Proof of Upper Bound Theorem

Theorem: Assume that the k wronskians
W(fl)7 W(fla f2)7 W(fla f27 f3)7 ceey W(fl7 sy fk)

have no zeros on /.

Let f = a1fi + - -+ + akfx where a; # 0 for some .

Then f has at most kK — 1 zeros on I, counted with multiplicities.

Proof: By induction on k.

Assume k > 2 and ap, ..., a, not all 0.

Write f = fig where g = a1 + axfh /i + - -+ + akfy/fi.

To apply induction hypothesis to g’ = ax(f/A) + -+ + ak(fc/f):

Note _
W((R/f),...,(f/R)) = W(f,...,£)/f

has no zero on /.
Hence g’ has at most kK — 2 zeros on [,
g and f at most kK — 1 by Rolle’s theorem.

Application: Intersection of a plane curve and a line (1/2)

Theorem (Avendano’09):

Let g = Zjlle aix¥yPi and f(x) = f(x,ax + b). Assume fZ0.
If b/a > 0 then f has at most 2k — 2 in each of the 3 intervals
| —oo,—b/al, ] — b/a,0], ]0,+o0].

Remark: This bound is provably false for rational exponents.

Set a=b=1and £;(X) = X4(1+ X)“.
The entries of the wronskians are of the form:

) = 3 Xt (1 4+ X)HHe,
t=0

Factorizing common factors in rows and columns shows
k
2

W(h, ... f) = xZi4 1+ )25 G) det M

where det M has degree < (g)



Application: Intersection of a plane curve and a line (2/2)

Conclusion:

f(x) = Zjlle ajx%(1+ x)% has O(k*) zeros in ]0, +oo].

Proof:

Assume W(fy, ..., f)Z0 (otherwise, there is a linear dependence).

We have k Wronskians, each with O(k?) zeros in ]0, +o0.
= O(k3) intervals containing < k — 1 zeros each.

Remarks:
» This can be adapted to a number of different models.
> A better use of the Wronskian leads to O(k3) upper bound.

To learn more about the Wronskian. ..

» M. Krusemeyer. Why does the Wronskian work?
American Math. Monthly, 1988.
(Recursive formula for the Wronskian)

» A. Bostan and P. Dumas.
Wronskians and linear independence.
American Math. Monthly, 2010. (New non-recursive proof
for analytic functions and power series)

» G. Pdélya and G. Szego.
Problems and theorems in analysis Il.
(Includes connection to Descartes’ rule of signs,
pointed out by Saugata Basu)



To learn even more. ..

» M. Voorhoeve and A. J. van der Poorten.
Wronskian determinants and the zeros of certain functions.
Indagationes Mathematicae 78(5):417-424, 1975.
(Includes strong version of upper bound theorem;
Voorhoeve's papers pointed out by Maurice Rojas)

» P: Koiran, N. Portier and S. Tavenas.
A Wronskian approach to the real 7-conjecture.
arxiv.org/abs/1205.1015
(Preliminary version, check for updates!)

50 Rolle’s Theorem and Descartes’ Rule of Signs

§ 7. What is the Basis of Descartes’ Rule of Signs?
We see from 36, 41, 77, 84, 85 that the sequences of functions

1, X, S X,
! L, ¥, G- o
: %, £, eM%, e
1 L R S S
’ x ., xXx+D x(x+DE+2

“
Flo®), Flg), Flad, ...

considered there have a common property: The number of zeros lying in a certain

interval of their linear binations with constant i never exceeds the

number of changes of sign of these coefficients. What is the basis for this frequent

validity of Descartes’ rule of signs?

Let the sequence of functions ,
(), ha(x)s Ba(X), -5 %)
obey Descartes’ rule of signs in the open inverval a<x <b. More precisely: If

Ay, Oy -+ s a, denote any realnumbers which are not all zero, then the number of
zeros lying in a<x<b of the linear combination {
N ayhy () + Goho() + - -+ anl(%)

M%ﬁ,&,\\k never exceeds the number of changes of sign of the sequence

|

ay, ag, - f

For this to hold, the following property of the sequence /;(x), Ag(x), . . ., ha(X) |

is aconditiun: vy, ve, ...y v, denote integers with 1 Sv; <vp<vg<--- < ‘
» <n, then the Wronskian determinants [VII, §5]

Wiy (0)s hog®)s B2 <5 @]
do not vanish in the interval {(a, b) and further any two Wronskian determinants ‘
with the same number / of rows have the same sign, where /=1,2,3,...,n—1.
[Look at multiple zeros!]
88 (continued). In particular for the validity of Descartes’ rule of signs it is
necessary that in the interval a<x <b the quotients
ha(x)  ho(x) hulx)
X R E S e
are all positive and are either all i d
increasing.
89 (continued). Let 1 Sa=n. If hy(x), Ax(x), . . ., h(x) satisfy the determinantal
conditions stated in 87, then so do the n—1 functions

or all

dh dh b

=g W= gn s He=Tiy,
_ A b _dhyy _dh

He=ge Hhea=gms Heasgy

[VIL 68.]




Appendix: lower bound for restricted depth 4 circuits

Consider representations of the permanent of the form:

k m
per(X) => ] (X) (1)
i=1 j=1
where
» X is a n X n matrix of indeterminates.
> k and m are bounded, and the «;; are of polynomial bit size.

» The f; are polynomials in n?

with at most t monomials.

variables,

Theorem [with Grenet, Portier and Strozecki]:

No such representation if t is polynomially bounded in n.
Remark: The point is that the a;; may be nonconstant.
Otherwise, the number of monomials in (1) is polynomial in t.

Lower Bound Proof

» Assume otherwise:

£ (X). (2)

k m
per(X)ZZ_

i=1j=1

> Since per is easy, P, = [[°_;(x — i) is easy too.
In fact [Biirgisser], P,(x) = per(X) where X is of size n®1),
with entries that are constants or powers of x.

> By (2) and upper bound theorem, P, should have only n®)
real roots.

But P, has 2" integer roots!

Remark:

The current proof requires the Generalized Riemann Hypothesis
(to handle arbitrary complex coefficients in the f;).



