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Software

D-modules and algebraic analysis:

kan/sm1 by N. Takayama et al.

D-modules package in Macaulay2 by A. Leykin and H. Tsai

Risa/Asir by M. Noro et al.

OreModules package suite for Maple by D. Robertz,
A. Quadrat et al.

Singular:Plural with a D-module suite; by V. L. et al.
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HolonomicFunctions by C. Koutschan

Singular:Locapal (partly under development) by V. L. et
al.
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Overview

Operator algebras and their partial classification

More general: G -algebras and Gröbner bases in G -algebras

Module theory; Dimension theory; Gel’fand-Kirillov dimension

Linear modeling with variable coefficients

Elimination of variables and Gel’fand-Kirillov dimension

Ore localization; smallest Ore localizations

Solutions via homological algebra

The complete annihilator program

Some computational D-module theory, Weyl closure

Purity; pure modules, pure functions, preservation of purity

Purity filtration of a module; connection to solutions

Jacobson normal form
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What is computer algebraic Analysis?

Algebraic Analysis

1 As a notion, it arose in 1958 in the group of Mikio Sato
(Japan)

2 Main objects: systems of linear partial DEs with variable
coefficients, generalized functions

3 Main idea: study systems and generalized functions in a
coordinate-free way (i. e. by using modules, sheaves,
categories, localizations, homological algebra, . . . )

4 Keywords include D-Modules, (sub-)holonomic D-Modules,
regular resp. irregular holonomic D-Modules

5 Interplay: singularity theory, special functions, . . . .

Other ingredients: symbolic algorithmic methods for discrete resp.
continuous problems like symbolic summation, symbolic integration
etc.
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What is computer-algebraic Analysis?

Algebraization as a trend
Algebra: Ideas, Concepts, Methods, Abstractions

Computer algebra works with algebraic concepts in a
(semi-)algorithmic way at three levels:

1 Theory: Methods of Algebra in a constructive way

2 Algorithmics: Algorithms (or procedures) and their
Correctness, Termination and Complexity results (if possible)

3 Realization: Implementation, Testing, Benchmarking,
Challenges; Distribution, Lifecycle, Support and
software-technical aspects
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Some important names in computer-algebraic analysis

W. Gröbner and B. Buchberger: Gröbner bases and
constructive ideal/module theory

O. Ore: Ore Extension and Ore Localization

I. M. Gel’fand and A. Kirillov: GK-Dimension

B. Malgrange: M. isomorphism, M. ideal, . . .

J. Bernstein, M. Sato, M. Kashiwara, C. Sabbah,
Z. Mebkhout, B. Malgrange et al.: D-module theory

N. Takayama, T. Oaku, B. Sturmfels, M. Saito, M. Granger,
U. Walther, F. Castro, H. Tsai, A. Leykin et al.: (not only)
computational D-module theory

. . .
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Part I. Operator algebras and their partial classification.
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Operator algebras: partial Classification

Let K be an effective field, that is (+,−, ·, :) can be performed
algorithmically.
Moreover, let F be a K -vector space (”function space”).

Let x be a local coordinate in F . It induces a K -linear map
X : F → F , i. e. X (f ) = x · f for f ∈ F . Moreover, let

ox : F → F be a K -linear map.

Then, in general, ox ◦ X 6= X ◦ ox , that is
ox(x · f ) 6= x · ox(f ) for f ∈ F .

The non-commutative relation between ox and X can be often
read off by analyzing the properties of ox like, for instance, the
product rule.
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Classical examples: Weyl algebra

Let f : C→ C be a differentiable function and ∂(f (x)) := ∂f
∂x .

Product rule tells us that ∂(x f (x)) = x ∂(f (x)) + f (x), what is
translated into the following relation between operators

(∂ ◦ x − x ◦ ∂ − 1) (f (x)) = 0.

The corresponding operator algebra is the 1st Weyl algebra

D1 = K 〈x , ∂ | ∂x = x∂ + 1〉.
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Classical examples: shift algebra

Let g be a sequence in discrete argument k and s is the shift
operator s(g(k)) = g(k + 1). Note, that s is multiplicative.

Thus s(kg(k)) = (k + 1)g(k + 1) = (k + 1)s(g(k)) holds.

The operator algebra, corr. to s is the 1st shift algebra

S1 = K 〈k , s | sk = (k + 1)s = ks + s〉.

Intermezzo

For a function in differentiable argument x and in discrete
argument k the natural operator algebra is

A = D1 ⊗K S1 = K 〈x , k , ∂x , sk | ∂xx = x∂x + 1, skk = ksk + sk ,

xk = kx , xsk = skx , ∂xk = k∂x , ∂xsk = sk∂x〉.
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Examples form the q-World

Let k ⊂ K be fields and q ∈ K ∗.
In q-calculus and in quantum algebra three situations are common
for a fixed k: (a) q ∈ k, (b) q is a root of unity over k , and
(c) q is transcendental over k and k(q) ⊆ K .

Let ∂q(f (x)) = f (qx)−f (x)
(q−1)x be a q-differential operator.

The corr. operator algebra is the 1st q-Weyl algebra

D
(q)
1 = K 〈x , ∂q | ∂qx = q · x∂q + 1〉.

The 1st q-shift algebra corresponds to the q-shift operator
sq(f (x)) = f (qx):

Kq[x , sq] = K 〈x , sq | sqx = q · xsq〉.
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Two frameworks for bivariate operator algebras

Algebra with linear (affine) relation

Let q ∈ K ∗ and α, β, γ ∈ K . Define

A(1)(q, α, β, γ) := K 〈x , y | yx − q · xy = αx + βy + γ〉

Because of integration operator I(f (x)) :=
∫ x
a f (t)dt for a ∈ R,

obeying the relation I x − x I = −I2 we need yet more general
framework.

Algebra with nonlinear relation

Let N ∈ N and c0, . . . , cN , α ∈ K . Then A(2)(q, c0, . . . , cN , α) is
K 〈x , y | yx − q · xy =

∑n
i=1 ciy

i + αx + c0〉 or
K 〈x , y | yx − q · xy =

∑n
i=1 cix

i + αy + c0〉.
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Theorem (L.–Koutschan–Motsak, 2011)

A(1)(q, α, β, γ) = K 〈x , y | yx − q · xy = αx + βy + γ〉,
where q ∈ K ∗ and α, β, γ ∈ K
is isomorphic to the 5 following model algebras:

1 K [x , y ],

2 the 1st Weyl algebra D1 = K 〈x , ∂ | ∂x = x∂ + 1〉,
3 the 1st shift algebra S1 = K 〈x , s | sx = xs + s〉,
4 the 1st q-commutative algebra Kq[x , s] = K 〈x , s | sx = q · xs〉,
5 the 1st q-Weyl algebra D

(q)
1 = K 〈x , ∂ | ∂x = q · x∂ + 1〉.
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Theorem (L.–Makedonsky–Petravchuk, new)

For N ≥ 2 and c0, . . . , cN , α ∈ K, A(2)(q, c0, . . . , cN , α)
= K 〈x , y | yx − q · xy =

∑N
i=1 ciy

i + αx + c0〉 is isomorphic to . . .

1 Kq[x , s] or D
(q)
1 , if q 6= 1,

2 S1 = K 〈x , s | sx = xs + s〉, if q = 1 and α 6= 0,

3 K 〈x , y | yx = xy + f (y)〉, where f ∈ K [y ] with deg(f ) = N, if
q = 1 and α = 0.
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Application

Given a system of equations S in terms of other operators,

one can look up a concrete isomorphism of K -algebras (e. g. from
the mentioned papers)

and rewrite S as S ′ in terms of the operators above.

Further results on S ′ after performing computations can be
transferred back to original operators.

Example: difference and divided difference operators ∆n = Sn − 1,

∆
(q)
n = S

(q)
n − 1 etc.
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Quadratic algebras

Lemma (L.–Makedonsky–Petravchuk, new)

K 〈x , y | yx = xy + f (y)〉 ∼= K 〈z ,w | wz = zw + g(w)〉
if and only if

∃λ, ν ∈ K ∗ and ∃µ ∈ K, such that g(t) = νf (λt + µ) (in
particular deg(f ) = deg(g)).

Lemma (L.–Makedonsky–Petravchuk, new)

For any algebra of the type B = K 〈a, b | ba = ab + f (a)〉 for f 6= 0
there exists an injective homomorphism into the 1st Weyl algebra.
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Quadratic algebras

Let N = deg f (y) = 2 and K be algebraicaly closed field of
charK > 2. Then there are precisely two classes of non-isomorphic
algebras of the type K 〈x , y | yx = xy + f (y)〉:

K 〈x , y | yx = xy + y2〉 type

integration algebra K 〈x , I | I x = x I − I2〉,
the algebra K 〈x−1, ∂ = d

dx | ∂x−1 = x−1∂ − (x−1)2〉,
the algebra K 〈x , ∂−1 | ∂−1x = x∂−1 − (∂−1)2〉 etc.

K 〈x , y | yx = xy + y2 + 1〉 type

tangent algebra K 〈tan, ∂ | ∂ · tan = tan ·∂ + tan2 +1〉 (take
y = tan, x = −∂)

the subalgebra of the 1st Weyl algebra, generated by Y = −x
and X = (x2 + 1)∂; then YX = XY + Y 2 + 1 etc.
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Open problems for the Part 1

Let A be a bivariate algebra as before.

If S is a multiplicatively closed Ore set (see next parts), then
there exists localization S−1A, such that A ⊂ S−1A holds.

Problem: establish isomorphy classes for the localized algebras
S−1A, depending on the type of S .

Example: in the part on localization.
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More general framework: G -algebras

Let R = K [x1, . . . , xn]. The standard monomials xα1
1 xα2

2 . . . xαn
n ,

αi ∈ N, form a K -basis of R.

Mon(R) 3 xα = xα1
1 xα2

2 . . . xαn
n 7→ (α1, α2, . . . , αn) = α ∈ Nn.

1 a total ordering ≺ on Nn is called a well–ordering, if
∀F ⊆ Nn there exists a minimal element of F , in particular
∀ a ∈ Nn, 0 ≺ a

2 an ordering ≺ is called a monomial ordering on R, if

∀α, β ∈ Nn α ≺ β ⇒ xα ≺ xβ

∀α, β, γ ∈ Nn such that xα ≺ xβ we have xα+γ ≺ xβ+γ .

3 Any f ∈ R \ {0} can be written uniquely as f = cxα + f ′,
with c ∈ K ∗ and xα

′ ≺ xα for any non–zero term c ′xα
′

of f ′.
lm(f ) = xα, the leading monomial of f
lc(f ) = c , the leading coefficient of f .
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Towards G -algebras

Suppose we are given the following data

1 a field K and a commutative ring R = K [x1, . . . , xn],

2 a set C = {cij} ⊂ K ∗, 1 ≤ i < j ≤ n

3 a set D = {dij} ⊂ R, 1 ≤ i < j ≤ n

Assume, that there is a monomial well–ordering ≺ on R such that

∀1 ≤ i < j ≤ n, lm(dij) ≺ xixj .

To the data (R,C ,D,≺) we associate an algebra

A = K 〈x1, . . . , xn | {xjxi = cij · xixj + dij} ∀1 ≤ i < j ≤ n〉.

A is called a G–algebra in n variables, if

cikcjk ·dijxk − xkdij + cjk · xjdik − cij ·dikxj +djkxi − cijcik · xidjk = 0.
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G -algebras

Theorem (Properties of G -algebras)

Let A be a G-algebra in n variables. Then

A is left and right Noetherian,

A is an integral domain,

the Gel’fand-Kirillov dimension over K is GKdim(A) = n,

the global homological dimension gl. dim(A) ≤ n,

the generalized Krull dimension Kr. dim(A) ≤ n.

A is Auslander-regular and a Cohen-Macaulay algebra.
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Classical examples: full shift algebra

Adjoining the backwards shift s−1 : f (x) 7→ f (x − 1) to the shift
algebra, we incorporate several more relations, which define a
so-called full shift algebra:

K 〈x , s, s−1 | sx = (x + 1)s, s−1x = (x −1)s−1, s−1s = s · s−1 = 1〉

Note: full shift algebra is not a G -algebra, due to the relation
s · s−1 = 1. But it can be realized as a factor algebra of a
G -algebra
A = K 〈x , s, s−1 | sx = (x + 1)s, s−1x = (x − 1)s−1, s−1s = ss−1〉
modulo the two-sided ideal 〈s−1s − 1〉.

We can also realize this algebra as an Ore localization of the shift
algebra, see next parts.
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Gröbner Bases in G -algebras

Let A be a G -algebra in x1, . . . , xn. From now on, we assume that
a given ordering is a well-ordering.

Definition

We say that xα | xβ, i. e. monomial xα divides monomial xβ, if
αi ≤ βi ∀i = 1 . . . n.

It means that xβ is reducible by xα, that is there exists γ ∈ Nn,
such that β = α + γ. Then lm(xαxγ) = xβ, hence
xαxγ = cαγx

β+ lower order terms.

Definition

Let ≺ be a monomial ordering on A, I ⊂ A be a left ideal and
G ⊂ I be a finite subset. G is called a (left) Gröbner basis of I ,
if ∀ f ∈ I r {0} there exists a g ∈ G satisfying lm(g) | lm(f ).
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Gröbner Bases in G -algebras

There exists a generalized Buchberger’s algorithm (as well as
other generalized algorithms for Gröbner bases), which works
along the lines of the classical commutative algorithm.

There exist algorithms for computing a two-sided Gröbner
basis, which has no analogon in the commutative case.

G -algebras are fully implemented in the actual system
Singular:Plural, as well as in older systems MAS,
Felix.

In Singular:Plural there are many thorougly implemented
functions, including Gröbner bases, Gröbner basics (module
arithmetics) and numerous useful tools.
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Gröbner Technology = Gröbner trinity + Gröbner basics

Gröbner trinity:

left Gröbner basis of a submodule of a free module

left syzygy module of a given set of generators

left transformation matrix, expressing elements of Gröbner
basis in terms of original generators

Gröbner basics (Buchberger, Sturmfels, ...)

Ideal (resp. module) membership problem (NF, reduce)

Intersection with subrings (eliminate)

Intersection and quotient of ideals (intersect, quot)

Kernel of a module homomorphism (modulo)

Kernel of a ring homomorphism (preimage)

Algebraic dependencies of commuting polynomials

Hilbert polynomial of graded ideals and modules . . .
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Part II. Dimension theory.
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From system of equations to modules

Consider Legendre’s differential equation (order 2 in ∂x)

(x2 − 1)P ′′n(x)2 + 2xP ′n(x)− n(1 + n)Pn(x) = 0

x is differentiable with ∂x as corr. operator

if n ∈ Z, n is discretely shiftable with sn as corr. op.

then there is a recursive formula of Bonnet (order 2 in shift sn)

(n + 1)Pn+1(x)− (2n + 1)xPn(x) + nPn−1(x) = 0.
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O := K 〈n, sn | snn = nsn + sn〉 ⊗K K 〈x , ∂x | ∂xx = x∂x + 1〉.

From the system of equations

(x2 − 1)P ′′n(x)2 + 2xP ′n(x)− n(1 + n)Pn(x) = 0,

(n + 1)Pn+1(x)− (2n + 1)xPn(x) + nPn−1(x) = 0.

one obtains the matrix P ∈ O2×1; thus M = O/O1×2P and

[
(x2 − 1)∂2x + 2x∂x − n(1 + n)

(n + 2)s2n − (2n + 3)xsn + n + 1

]
• Pn(x) =

[
0
0

]
.

With the help of Gröbner bases over O: a minimal generating set
of the left ideal P contains a compatibility condition

(n + 1)sn∂x − (n + 1)x∂x − (n + 1)2 ≡ (n + 1)(sn∂x − x∂x + n + 1).
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From system of equations to modules

Let f1(x1, . . . , xn), . . . , fm(x1, . . . , xn) be unknown generalized
functions, for instance from C∞(Rn).
Then a homogeneous system of linear functional (operator)
equations with coefficients from K [x1, . . . , xn] can be presented via
the matrix equation in the corresponding operator algebra O:

P ·




f1
...

fm


 =




0
...
0


 , P ∈ O`×m

One associates to the system a left O-module M = O1×m/O1×`P,
saying M is finitely presented by a matrix P.
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From system of equations to modules

Different matrices Pi can represent the same module M.

For instance, for any unimodular T ∈ O`×` one has
Pf = 0⇔ (TP)f = 0 and also O1×m/O1×`TP ∼= O1×m/O1×`P.

For various purposes we might utilize different presentations of M.
The invariants of a module M, like dimensions, do not depend on
the presentation.

Algebraic manipulations from the left on P often need algorithms
for left Gröbner bases for a submodule of a free module, generated
by rows or columns of P (thus not only GBs of ideals).

VL Elements of CAAN



Systems, modules, solutions
Modeling

Dimensions

From system of equations to modules
From modules to solutions of systems
From functions to modules

From modules to solutions of systems

Let F be a left O-module (not necessarily finitely presented), and
P a system of equations as before, then

SolO(P,F) := {f ∈ Fm×1 : P • f = 0}.

Noether-Malgrange Isomorphism

There exists an isomorphism of K -vector spaces

HomO(M,F) = HomO(O1×m/O1×`P,F) ∼= SolO(P,F),

(φ : M → F) 7→ (φ([e1]), . . . , φ([em])) ∈ Fm×1 .
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From functions to modules

Let F be a left O-module (not necessarily finitely presented), and
f ∈ F . Consider Of = {o • f | o ∈ O}, which is an O-submodule
of F .

Consider a homomorphism of left O-modules
φf : O→ F , o 7→ o • f , in other words φf (1) = f ∈ F . Then

Imφf = Of , Ker φf = {o ∈ O : o • f = 0} =: AnnO f

as left O-modules, one has Of ∼= O/AnnO f

hence Of is finitely presented left O-module.

An element m ∈ F is called a torsion element, if AnnO m 6= 0.

Many classical functions in common functional spaces are torsion.

Hence, algorithms for the computation of the left ideal AnnO m
(which is finitely generated when O is Noetherian) are very
important.
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Many classical functions in common functional spaces are torsion.
But not all.

Example: f = tan(x) is not a torsion element in a module over
Weyl algebra, since there exists no system of linear ODEs with
variable coefficients, having tan(x) as solution. However, there is a
nonlinear ODE f ′ = 1 + f 2.

Recall: we are able to treat polynomials in the operator tan(x)· as
coefficients in an algebra with differentiation w.r.t x .
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From functions to modules

Let F be a left O-module, and f1, . . . , fm ∈ F be torsion elements.
Consider M = Of1 + . . .+ Ofm. As we know, every Ofi is finitely
presented O-submodule of F .

Consider a homomorphism of left O-modules

φ : Om =
m⊕

i=1

Oei → F ,
∑

oiei 7→
∑

oi • fi ,

in other words φ(ei ) = fi ∈ F . Then Im φ = M =
∑

Ofi ,

Ker φ = {[o1, . . . , om] ∈ Om :
∑

oi • fi = 0} =: MannO M

as left O-modules, one has M =
∑

Ofi ∼= Om/MannO M

hence M =
∑

i Ofi is finitely presented left O-module.

Clearly ⊕Ker φfi ei ⊆ MannO M.

In general there is no left ideal I ⊂ O, such that
Om/MannO M ∼= O/I .
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Idea: Model polynomial-exponential signals by linear systems.
Question: What is more precise in such a modeling: operator
algebras with constant or with polynomial coefficients?

Answer: algebras with polynomial coefficients.

Theorem (Zerz–L.–Schindelar, 2011)

Let K = R, pi ∈ K [x1, . . . , xn]` and V = Kp1 + · · ·+ Kpm. Let O
be the n-th Weyl algebra and O ⊃ AnnO(V ) := ∩AnnO pi be the
left ideal of operators, simultaneously annihinalting p1, . . . , pm.
Then

SolO( O/AnnO(V ), C∞(R`)) = V .

Keywords: Variant Most Powerful Unfalsified Model, cf. two
recent papers by Zerz, L. and Schindelar.
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Dimensions

Generalized Krull dimension (for an algebra or a module,
Kr. dim M) is called Krull-Rentschler-Gabriel dimension;
not algorithmic

projective dimension of a module, p. dim M; algorithmic
(relatively expensive), implemented

global homological dimension of an algebra, gl. dim A =
sup{p. dim M : M ∈ A−mod}, in general not algorithmic

homological grade of a module, j(M); algorithmic (a little less
expensive than p. dim M), implemented

Gel’fand-Kirillov Dimension; algorithmic (relatively cheap),
implemented; intuition: similar to usual Krull dimension
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Filtration on algebras and modules

Let A be a K -algebra, generated by x1, . . . , xm.

Degree filtration

Let V = Kx1 ⊕ . . .⊕ Kxm be a vector space.

Set V0 = K , V1 = K ⊕ V and Vk+1 = Vk ⊕ V k+1. If

Vi ⊆ Vi+k , Vi · Vj ⊆ Vi+j , A =
∞⋃

k=0

Vk ,

then {Vk | k ∈ N} is the standard (ascending) filtration of A.
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Gel’fand-Kirillov dimension and its properties

Let M0 ⊂ M be a finite K -vector space, spanned by the generators
of M. That is dimK M0 <∞ and AM0 = M.

{Hd := VdM0, d ∈ N} is an induced ascending filtration on M.

The Gel’fand-Kirillov dimension of M is defined as follows

GKdim(M) = lim sup
d→∞

(logd(dimK Hd))

In the standard construction one puts deg xi := 1 and defines
Vd := {f | deg f = d} and V d := {f | deg f ≤ d}.

Conventions: GKdim(0) = −∞. GKdimQ(Q) = 0.

VL Elements of CAAN



Systems, modules, solutions
Modeling

Dimensions

Gel’fand-Kirillov dimension
GK-dimension and elimination

Lemma

Let A be a K -algebra and a domain. If the standard filtration on A
is compatible with the PBW Basis {xα | α ∈ Nm}, then
GKdimK (A) = m.

dim Vd =

(
d + m − 1

m − 1

)
, dim V d =

(
d + m

m

)
.

Thus
(d+m

m

)
= (d+m)...(d+1)

m! = dm

m! + . . . and

GKdim(A) = lim supd→∞ logd

(
d + m

m

)
= m.

Hence for any G -algebra A in n variables has GKdimK (A) = n.
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Gel’fand-Kirillov dimension: examples and properties

Free associative algebra T = K 〈x1, . . . , xn〉, n ≥ 2

dim Vd = nd , dim V d = nd+1−1
n−1 . Note, that nd+1−1

n−1 > nd .

Since logd nd = d logd n = d
logn d

→∞, d →∞, it follows that

GKdim(T ) =∞.

Properties

GKdim M = sup{GKdim(N) : N ∈ A−mod , N ⊆ M},
GKdim A = sup{GKdim(S) : S ⊆ A, S fin. gen. subalgebra}

Hence, if |K | =∞, then GKdim(K [[x1, . . . , xn]]) =∞ for n ≥ 1.
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Lemma (R is commutative)

(i) Let R be a commutative affine K -algebra. Then (by Noether
normalization) ∃S = K [x1, . . . , xt ] ⊆ R and R is finitely
generated S-module. Then GKdimK R = Kr. dim S = t.

(ii) If R is an integral domain, GKdimK R = tr. degK Quot(R).

For any K -algebra R: GKdim R[x1, . . . , xm] = GKdim R + m.
Curiosity: GKdim(R) ∈ {0, 1} ∪ [2,+∞).

Exactness

Let R be an affine algebra with finite standard fin.-dim. filtration,
such that Gr R is left Noetherian. Then GKdim is exact on short
exact sequences of fin. gen. left R-modules. That is,

0→ L→ M → N → 0 ⇒ GKdim M = sup{GKdim L,GKdim N}
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Gel’fand-Kirillov dimension for modules

There is an algorithm by Gomez-Torrecillas et. al., which computes
Gel’fand-Kirillov dimension for finitely presented modules over
G -algebras over ground field K . It is implemented e. g. in
Singular:Plural.

GKdimK (F )

Let A be a G -algebra in variables x1, . . . , xn.

◦ Input: Left generating set F = {f1, . . . , fm} ⊂ Ar

◦ Output: k ∈ N, k = GKdim(Ar/M), where M = A〈F 〉 ⊆ Ar .

G =LeftGröbnerBasis(F ) = {g1, . . . , gt} ;

L = {lm(gi ) = xαi es | 1 ≤ i ≤ t};
N = K [x1,...,xn]〈L〉;
return Kr. dim(K [x1, . . . , xn]r/N);
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Gel’fand-Kirillov dimension for modules: example

Recall Legendre’s example:

O := K 〈n, sn | snn = nsn + sn〉 ⊗K K 〈x , ∂x | ∂xx = x∂x + 1〉.

Then GKdimK O = 4.

The Gröbner basis of the ideal P is

(x2 − 1)∂2x + 2x∂x − n(1 + n), (n + 2)s2n − (2n + 3)xsn + n + 1,

(n + 1)sn∂x − (n + 1)x∂x − (n + 1)2.

The leading monomials are x2∂2x , ns2n , nsn∂x . Hence

GKdimK O/P = Kr. dim K [n, sn, x , ∂x ]/〈x2∂2x , ns2n , nsn∂x〉 = 2.
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Elimination and GK-dimension

Lemma (MR, KL)

Let I ⊂ A be a left ideal and S ⊂ A be a subalgebra. Then

I ∩ S = 0 implies GKdim A/I ≥ GKdim S,

GKdim A/I < GKdim S implies I ∩ S 6= 0.

Recall: Bernstein’s inequality

Let A be the n-th Weyl algebra over K with
char K = 0 = GKdim K , then GKdim(A) = 2n.

Let 0 6= M be an A-module, then GKdimK M ≥ n.
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Elimination and GK-dimension

Let f ∈ F , such that AnnO f ∩ K [x1, . . . , xn] = 0. Then
GKdimK O/AnnO f ≥ n.

Proposition (Existence of elimination via dimension)

Let O =
⊗n

i=1Oi , Oi = K 〈xi , oi | . . .〉. Moreover, let I ⊂ O and
GKdimO/I = m. Then for any subalgebra S ⊂ O, such that
GKdim S ≥ m + 1 one has I ∩ S 6= 0.

Application: For I such that GKdimO/I = m we guarantee that
2n − (m + 1) = 2n −m − 1 variables can be eliminated from I ,
for instance, if m = n, we can eliminate

all but one operators,

all but one coordinate variables.

More applications will follow . . . in the parts, which follow.
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Part III. Ore localization.
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Localization in commutative case

Let A be a commutative Noetherian domain and

S a multiplicatively closed set in A, where 0 6∈ S .

The localization of A w.r.t S is a ring AS := S−1A together with
an injective homomorphism φ : A→ AS , such that

(i) for all s ∈ S φ(s) is a unit in AS ,

(ii) for all f ∈ AS , ∃a ∈ A, s ∈ S s. t. f = φ(s)−1φ(a).
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Example

Let A = K [x1, . . . , xn].

for f ∈ A \ K , consider S = {f i : i ∈ N}. Then

S−1A ∼= K [x1, . . . , xn,
1
f ].

this type is called a monoidal localization.

Another instance: for f1, . . . , fm ∈ A \ K , defining
S = {f i1

1 · . . . f im
m : ij ∈ N} results in

K [x1, . . . , xn,
1
f1
, . . . , 1

fm
] ∼= K [x1, . . . , xn,

1
f1···fm ]

∼= ({(f1 · · · fm)i : i ∈ N})−1K [x1, . . . , xn].
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Example

Let A = K [x1, . . . , xn].

If S = A∗ := A \ {0}, then S−1A ∼= Quot(A) = K (x1, . . . , xn).

this type is called a rational localization.

For p ∈ Kn, consider mp := 〈x1 − p1, . . . , xn − pn〉, a maximal
ideal in K [x1, . . . , xn]. Define S = K [x1, . . . , xn] \mp. Then

S−1A = K [x1, . . . , xn]p = {g

h
| g ∈ K [x1, . . . , xn], h /∈ mp}

this type is called a geometric localization, it is widely used
in algebraic geometry.
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Example

Let A = K [[x1, . . . , xn]].

If S = A∗ := A \ {0}, then
S−1A ∼= Quot(A) = K ((x1, . . . , xn)).

Notably, K [[x1, . . . , xn]] is a local ring (i. e. there is exactly
one maximal ideal). Thus for f := x1 · · · xn and
S = {f i : i ∈ N} one has S−1A ∼= Quot(A) = K ((x1, . . . , xn)).
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Ore localization

Let A be a non-commutative Noetherian domain and
S a multiplicatively closed set in A, where 0 6∈ S .
If S is additionally an Ore set in A, then ∃ S−1A.

Ore condition

For all s1 ∈ S , r1 ∈ A there exist s2 ∈ S , r2 ∈ A, such that

r1s2 = s1r2, that is s−11 r1 = r2s−12 .

Ore condition holds ⇒ S is an Ore set in A.
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Example

Let S = A∗ := A \ {0}. Then S−1A ∼= Quot(A) (quotient
division ring of a domain).

If K ( S ( A∗, then A→ AS → Quot(A),

For any S , S−1A is an A-module (not finitely generated),

in general A is not an S−1A-module.

S−1 gives rise to a functor A-mod → S−1A-mod.
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Smallest localizations

We take A to be one of model algebras and f ∈ A \ K . We will
analyze, whether S = {f i : i ∈ N} is an Ore set in A.

Weyl algebra: S is an Ore set

Suppose we are given g =
∑d

j=0 bj(x)∂j ∈ A1 with bd 6= 0 and f k

for a fixed k ∈ N.

For j ∈ N and i + 1 ≥ j one has ∂j · f i+1 = f i−j+1 · (f j∂j + vij),
where the terms of vij ∈ A1 have degree at most j − 1 and contain
derivatives up to f (j). Then

g · f d+k =
d∑

j=0

bj(x)∂j · f d+k = fk ·
d∑

j=0

bj(x)(f j∂j + vj+k,j)f d−j .
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Smallest localizations: shift algebra

S is not Ore in A = K 〈x , s | sx = (x + 1)s〉
Take s and f k(x) ∈ S and suppose, that ∃f `(x) and ∃t ∈ A, such
that sf `(x) = f k(x)t. Thus f k(x)t = f (x + 1)`s. But

f (x) - f (x + 1) for f /∈ K , thus such t ∈ A does not exist.

Let us introduce the notion of Ore closure of a multiplicatively
closed set S : M(S) is the smallest (w.r.t inclusion) two-sided
multiplicative superset of S , which has an Ore property in A.
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Smallest localizations: shift algebra

Lemma (L.–Schindelar, 2011)

For the shift algebra, M(S) = {f n(x ± z) | n, z ∈ N0}.

Given g =
∑d

j=0 bj(x)s j ∈ A with bd 6= 0 and h(x) = f k(x + z0)

with k ∈ N, z0 ∈ Z. Let us define gf (x) :=
∏d

i=0 h(x − i) ∈ S .
Then

g · gf (x) = h(x)d ·
d∑

j=0

bj(x)
( d∏

i=0,i 6=j

h(x + j − i)s j
)
.
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Smallest localizations: shift algebra, other set

Consider S = {s i : i ∈ N}. Then S is an Ore set in A.

This follows from

∑

i

ai(x)si · sk = sk ·
∑

i

ai (x − k)s i

The resulting algebra is already mentioned full shift algebra:

({s i : i ∈ N})−1K 〈x , s | sx = (x + 1)s〉 ∼=

K 〈x , s, s−1 | sx = (x + 1)s, s−1x = (x − 1)s−1, s−1s = 1〉
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Smallest localizations: quantum plane

S = {f i : i ∈ N} is not Ore in A = K (q)〈x , y | yx = qxy〉.

Lemma (L.–Schindelar, 2011)

M(S) = {f n(q±zx) | n, z ∈ N0} is an Ore set in A.

For any g(x) ∈ K [x ] one has ymg(x) = g(qmx)y .
Suppose we are given g =

∑d
j=0 bj(x)y j ∈ A and

h(x) = f k(q`x) ∈ S1. Let us define gf (x) :=
∏d

i=0 h(q−ix) ∈ S .
Then

g·gf (x) =
d∑

j=0

bj(x)y j ·
d∏

i=0

h(q−ix) = h(x)·
d∑

j=0

bj(x)
d∏

i=0,i 6=j

h(qj−ix)y j .
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With Ore localization we can recognize, that

K (X )[∂1;σ1, δ1] · · · [∂m;σm, δm] ∼= (K [X ]\{0})−1K 〈X , ∂1, . . . , ∂m | . . .〉

and the functor S−1 connects categories of modules.

Algorithmic aspects

Algorithmic computations over S−1A can be replaced completely
with computations over A.
Keywords: integer strategy, fraction-free strategy.
For instance, a Gröbner basis theory over A induces a Gröbner
basis theory over S−1A.

There are implementations for the rational localization
K (X )〈∂1, . . .〉.
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Induced Gröbner basis theory in the localization

Let A be a G -algebra K [x1, . . . , xn]〈∂1, . . . , ∂n | . . .〉.
Suppose that S = K [x1, . . . , xn] \ {0} is an Ore set in A.
Moreover, let ≺X be an admissible monomial ordering on A,
having the elimination property for x , that is

1 ≺X xα ≺X ∂i , ∀α ∈ Nn, ∀1 ≤ i ≤ n.

Lemma

A Gröbner basis of a submodule N ⊂ Ar w.r.t ≺X

is a non-reduced Gröbner basis of a submodule

S−1N ⊂ (S−1A)r = K (x1, . . . , xn)〈∂1, . . . , ∂n | . . .〉r .
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Properties of localized modules

Let A be a K -algebra and S ⊂ A a mult. closed Ore set in A.
Moreover, let

M ∼= An/AmP, a finitely presented left A-module,

F a left A-module,

F̃ a left S−1A-module.

S−1M ∼= (S−1A)n/(S−1A)mP.

SolA(M, F̃) ∼= SolS−1A(S−1M, F̃),

Assume, that F̃ ⊂ F as left A-modules. Then

SolA(M, F̃) ⊆ SolA(M,F),
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Properties of localized modules

Message: In order to compute generalized solutions, work over
unlocalized ring and thus employ target spaces, having torsion
under localization.

Technology: the information, obtained for the localized module
(and homomorphism of such etc.), can be and should be used for
studying the original module (and homomorphism of such etc.).
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Properties of localized modules

Here is a typical situation of behaviour of modules under
localization. Let Mi be A-modules, satisfying

0 ( M1 ( . . . ( Mi ( . . . ( Mj ( . . . ( Mk ( . . . ( Mr ( A

After applying S−1 to this sequence, we obtain

0 = . . . = S−1Mi−1 ( S−1Mi = . . . = S−1Mj−1 ( S−1Mj ⊂ . . .

. . . ⊂ S−1Mk ( S−1Mk+1 = . . . = S−1Mr = A.
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Elimination, dimension and localization

Lower bound for nontrivially localizable modules

Suppose that I , S ⊂ O are such that

S is an Ore set in O (so S−1O exists)

(S−1O)I 6= S−1O (i. e. I is proper in the localized algebra).

Then I ∩ S = 0, what implies GKdimO/I ≥ GKdim KS , where KS
is the monoid algebra.

Note, that for every J ∈ S−1O there exists I ∈ O such that
S−1OI = S−1OJ (idea: clear denominators).

In general, if S−1OL 6= S−1O, one has

GKdim S−1O/(S−1O)L ≥ GKdimO/L.
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GK-dimension and localization

Drawback of Gel’fand-Kirillov dimension of localized algebras:
it is mathematically hard to determine. It is known, that
GKdim S−1A ≥ GKdim A.

Lemma (Very exceptional result)

Let A be the n-th Weyl algebra, S = K [x1, . . . , xn] \ {0}. Then
GKdim S−1A = GKdim A = 2n.

In the analogous situation for A being n-th shift, q-Weyl algebra or
a quantum space, we have GKdim S−1A ≥ 3n.

Lemma (Corollary from Makar-Limanov)

Let K = C, A be the n-th shift algebra and
S = K [x1, . . . , xn] \ {0}. Then
GKdim S−1A = 3n > 2n = GKdim A.
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An interesting D-module example
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Bernstein-Sato polynomial for varieties

The complete annihilator program

Let G ⊂ F be function spaces, i. e. K -vector spaces and left
O-modules over a fixed operator algebra O.

Let f ∈ F , then AnnFO f := {p ∈ O : pf = 0 ∈ F} is the
annihilator of f , which is a left ideal in O.

Let I ( O be an ideal and suppose, that dimK (G) <∞.
I is called the complete annihilator of G over O, if the following
properties hold:
”most powerful”: if ∀g ∈ G rg = 0 for r ∈ O, then r ∈ I
”unfalsified”: SolO(O/I , F) = G.

VL Elements of CAAN

Ore Localization and its recognition
Ore localization on modules

The complete annihilator program

An interesting D-module example
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The complete annihilator program

There exists no general algorithm, which can compute the
complete annihilator program of f over O (where O is an algebra
with polynomial coefficients).

Therefore one investigates some classes of f and develops special
methods for the classes.

One of successes is computational D-module theory, where
among other one can compute the complete annihilators of

f (x, s) = f1(x1, . . . , xn)s1 ·. . .·fm(x1, . . . , xm)sm , fi (x) ∈ K [x1, . . . , xn]

over O =
n⊗

i=1

KK 〈xi , ∂i | ∂ixi = xi∂i + 1〉 ⊗K K [s1, . . . , sm]

in an algorithmic way. There are implementations.
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Some computational D-module theory

Let char K = 0,
Dn(K ) = K 〈x1, . . . , xn, ∂1, . . . , ∂n | ∂jxi = xi∂j + δij〉 be the n-th
Weyl algebra and Dn[s] = Dn ⊗K K [s].

Theorem (J. Bernstein, 1971/72)

Let f (x) ∈ C[x1, . . . , xn]. Then there exist

an operator P(s) ∈ Dn ⊗C C[s],

a monic polynomial 0 6= bf (s) ∈ C[s] of the smallest degree
(called the global Bernstein-Sato polynomial),

such that for arbitrary s the following functional equation holds

P(s) • f s+1 = bf (s) · f s .

Let AnnD[s](f s) = {Q(s) ∈ D[s] | Q(s) • f s = 0} ⊂ D[s] be the
annihilator, then P(s)f − bf (s) ∈ AnnD[s](f s) holds.
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Some computational D-module theory

Some very easy examples:

∂x • (x)s+1 = (s + 1) · (x)s ,

(1/4)∂2x • (x2)s+1 = (s + 1)(s + 1/2) · (x2)s ,

(2x∂x + ∂x − 4s − 4) • (x2 + x)s+1 = (s + 1) · (x2 + x)s .

Some facts

M. Kashiwara: all roots of bf (s) are negative rationals

−1 is always a root; in general the roots lie in (−n, 0)

bf (s) = s + 1 if and only if V (f ) is smooth

B. Malgrange: if bf ,p(ξ) = 0 (local Bernstein-Sato polynomial
at p ∈ V (f )), then e2iπξ is an eigenvalue of the action on
monodromy

Complicated Bernstein-Sato polynomials appear for such f ,
that V (f ) possess complicated singularities
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More interesting D-module example

Consider f = (x2 + 9
4y2 + z2 − 1)3 − x2z3 − 9

80y2z3 ∈ K [x , y , z ].
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Numerology of Bernstein data

Then AnnD[s] f
s has 13 generators with leading terms

4617 · y3∂x , 513 · x2y∂x , . . . , 102400 · x2z5∂y , 37428480 · y4z5∂y ;

Bernstein-Sato poly:bf (s) = (s + 1)2 · (s + 2
3) · (s + 4

3) · (s + 5
3)

A reduced operator Pf(S) has 1261 terms, here some leading part
of them

(
1

24
xy2z3− 1

5760
xy2z2)∂3x∂

2
z + (

7084781

177292800
yz3− 1

4104
yz2)∂2x∂y∂

2
z
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Bernstein-Sato and singularities

Sing(f ) = V1 ∪ V2, where
V1 = V (〈x2 + 9/4y2 − 1, z) an ellipse at z = 0 plane;
V2 = V (〈x , y , z2 − 1〉) consists of 2 different points;
V3 = V (〈19x2 + 1, 171y2 − 80, z〉) consists of 4 different
points; moreover, V3 ⊂ V1, V2 ∩ V3 = ∅.

L. and Mart́ın-Morales, 2012: algorithm for constructing a
stratification of C3 into constructible sets such that bf ,p(s) is
constant on each stratum.

bf ,p(s) =





1 p ∈ C3 \ V (f ),

s + 1 p ∈ V (f ) \ (V1 ∪ V2),

(s + 1)2(s + 4/3)(s + 2/3) p ∈ V1 \ V3,

(s + 1)2(s + 4/3)(s + 5/3)(s + 2/3) p ∈ V3,

(s + 1)(s + 4/3)(s + 5/3) p ∈ V2.
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Weyl closure

Another success of computational D-module theory is the
possibility to compute the Weyl closure of certain ideals.

Let A be a K -algebra, S ⊂ A a m. c. Ore set in A. Moreover, let
0 6= J ( S−1A a left ideal. The restriction of J to A is the ideal
(S−1A)J ∩ A.

Let A be the n-th Weyl algebra, S = K (x1, . . . , xn) \ {0} and a left
ideal J satisfies dimK(x1,...,xn) S−1A/(S−1A)J <∞. Then the Weyl
closure of J is defined to be the restriction of J to A and there is
an algorithm to compute it in finitely many steps.

There are implementations of algorithms, computing Weyl closure
after H. Tsai (Macaulay2, recently in Singular:Plural).
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Weyl closure

Example (1st Weyl algebra)

Let I = 〈(x3 + 2)∂x − 3x2〉 ⊂ D1. Gröbner basis of J is then

{∂3x + x∂x − 3, x∂2x − 2∂x , x2∂x + ∂2x − 3x}

w.r.t degree reverse lexicographical ordering and

{(x3 + 2)∂x − 3x2, ∂x
2 + x2∂x − 3x}

w.r.t the ordering, eliminating x (compatible with localization).

Open problem

Can one develop algorithms for computing analogous closure for
other model algebras? Possible bottleneck: localizations of other
algebras are more involved, as we know from before.
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Bernstein-Sato polynomial for varieties

In the following, f s := f s1
1 · · · f sr

r .

Theorem (Budur, Mustaţǎ and Saito, 2006)

Let char K = 0. For every r -tuple f = (f1, . . . , fr ) ∈ K [x]r there
exists a non-zero univariate polynomial b(ξ) ∈ K [ξ] and r
differential operators P1(S), . . . ,Pr (S) ∈ Dn〈S〉 such that

r∑

k=1

Pk(S)fk • f s = b(s11 + · · ·+ srr ) · f s .

Here Dn is the n-th Weyl algebra in xi , ∂i and

Dn〈S〉 = Dn ⊗K K 〈s11, . . . , snn | ∀ 1 ≤ i , j , k, l ≤ n

sijskl − sklsij = δjksil − δilskj〉

VL Elements of CAAN



Ore Localization and its recognition
Ore localization on modules

The complete annihilator program

An interesting D-module example
Weyl closure
Bernstein-Sato polynomial for varieties

Bernstein-Sato polynomial for varieties

Theorem (Andres–L.–Mart́ın-Morales, ISSAC 2009)

Let f = (f1, . . . , fr ) be an r-tuple in K [x ]r and let Dn〈∂t ,S〉 be the
K -algebra generated by ∂t and S over Dn subject to relations on S
and {sij · ∂tk − ∂tk · sij = δjk∂ti}. Consider the left ideal in
Dn〈∂t ,S〉

F :=
〈

sij + ∂ti fj , ∂xm +
r∑

k=1

∂fk
∂xm

∂tk

∣∣∣∣
1 ≤ i , j ≤ r
1 ≤ m ≤ n

〉
.

Then AnnD〈S〉(f s) = Dn〈∂t , S〉F ∩ Dn〈S〉.

Thus, this is another type of objects, for which complete
annihilator program is successful.
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Part IV. Purity.
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Dimension function

Let A be a Noetherian algebra. A dimension function δ assigns a
value δ(M) to each finitely generated A-module M and satisfies
the following properties:

(i) δ(0) = −∞.

(ii) If 0→ M ′ → M → M ′′ → 0 is exact sequence, then
δ(M) ≥ sup{δ(M ′), δ(M ′′)} with equality if the sequence is
split.

(iii) If P is a (two-sided) prime ideal with P ⊆ AnnA(M) and M is
a torsion module over A/P, then δ(M) ≤ δ(A/P)− 1.

generalized Krull dimension is an exact dimension function

Gel’fand-Kirillov dimension is a dimension function, not
always exact
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Purity w.r.t dimension function

Let A be a K -algebra and δ a dimension function on A-mod.
A module M 6= 0 is δ-pure (or δ-homogeneous), if

∀0 6= N ⊆ M, δ(N) = δ(M).

A simple module is pure. Thus, purity is a useful weakening of
the concept of simplicity of a module.

Unlike simplicity, the purity (w.r.t a dimension function) is
algorithmically decidable over many common algebras.

M. Barakat, A. Quadrat: Algorithms for the computation of the
purity filtration of a module with δ = homological grade; there are
several implementations: in homalg, OreModules(Maple)
and Singular:Plural.
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Purity with respect to a dimension function

Lemma (L.)

Let A be a K -algebra and δ a dimension function on A-mod.
Moreover, let 0 6= M1,M2 ⊂ N be two δ-pure modules with
δ(M1) = δ(M2). Then

the set of δ-pure submodules (of the same dimension) of a module
is a lattice, i. e.

1 M1 ∩M2 is either 0 or it is δ-pure with δ(M1 ∩M2) = δ(M1),

2 M1 + M2 is δ-pure with δ(M1 + M2) = δ(M1).
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Ubiquity of pure modules

Consider purity with respect to Gel’fand-Kirillov dimension.

Lemma (L.)

Let A be a G-algebra, S ⊂ A a m. c. Ore set in A. Let M be a set

of left A-modules M, satisfying S−1M 6= 0 and having dimension
GKdim KS, where KS is the monoid algebra. Then M consists of
pure modules.

Example (Pure modules)

modules of Krull dimension 0 over K [x1, . . . , xn], i. e. modules
M, such that dimK M <∞
any set of modules of smallest possible dimension in A, for
instance holonomic modules over the n-th Weyl algebra over a
field with char K = 0; it is known that they have GK
dimension n over K .
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Ubiquity of pure modules

Recall

Let A be an operator algebra over K [x1, . . . , xn] and
S = K [x1, . . . , xn] \ {0} ⊂ A be a m. c. Ore set in A.
A left A-module M is called D-finite, if dimK(x1,...,xn) S−1M <∞.

Thus D-finite modules are pure.

Note: we can do much more with the concept of purity

We can consider pure modules of any reasonable dimension,
without restricting ourselves to the modules of smallest possible
dimension!
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Pure functions and operations with them

Let O be an operator algebra and F an O-module. A torsion
element f ∈ F (that is a ”function” having nonzero annihilator) is
called pure, is the corresponding left O-module Of ∼= O/AnnO f
is pure.

This definition generalizes both the notion of Zeilberger-holonomic
or D-finite function as well as some other.

Lemma (L.)

Let f ∈ F be a pure function. Then for any o ∈ O \ {0} h = of
is pure as well.

Proof: Og = Oof ⊂ Of is a natural submodule, hence it is pure.
Moreover, AnnO of =

{r ∈ O : r(of ) = (ro)f = 0} = {s ∈ AnnO f : ∃r ∈ O, s = ro} =

AnnO f : o = KerO(O→ O/AnnO f , 1 7→ o) is computable.
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Operations with pure functions

Lemma (L.)

Let f , g ∈ F be pure functions. Then for any p, q ∈ O \ {0}
h = pf + qg is pure as well.

Proof: by the previous lemma Mf = Opf and Mg = Oqg are pure
modules. By another lemma before Mf + Mg is pure. Hence
Oh ⊆ Mf + Mg is pure as well.
Moreover, (AnnO f : p) ∩ (AnnO g : q) ⊆ AnnO h.

More operations, preserving the purity, are under investigation.

Observation : many (but not all) special functions give rise to pure
modules.
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Identities, Elimination, Purity Filtration

Let 0→ M1 → M2 → M2/M1 → 0 be an exact sequence of
fin. pres. O-modules. Moreover, let F be an arbitrary O-module.
Then we have that SolO(M2/M1,F) ⊆ SolO(M2,F).

If F is injective O-module, the natural map
SolO(M2,F)→ SolO(M1,F) is surjective (not true for general F).

Purity filtration with δ = GKdim

Let O be a Noetherian domain, being Auslander-regular and
Cohen-Macaulay algebra with GKdimO = n.
Given a fin. pres. O-module M of dimension n > d ≥ 0, then the
purity filtration of M is the sequence

M = Mn−d ⊃ Mn−d+1 . . . ⊃ Mn−1 ⊃ Mn = 0.

where GKdim Mn−(d−i) = d − i . Moreover, Mn−d+k/Mn−d+k+1 is
either 0 or pure of dimension d − k .
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Identities, Elimination, Purity Filtration

Consider the mixed system, annihilating Legendre polynomials

O = K 〈n, sn | snn = nsn + sn〉 ⊗K K 〈x , ∂x | ∂xx = x∂x + 1〉.

M = O/P,

P = 〈(x2−1)∂2
x + 2x∂x −n(1 + n), (n + 2)s2

n − (2n + 3)xsn + n + 1,

(n + 1)(sn∂x − x∂x + n + 1)〉.
GKdimO = 4, GKdim M = 2, t(M) = M = O/P.
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The purity filtration of M = t(M) is 0 ( M3 ( M2 = M,

M3
∼= O/〈n + 1, sn, ∂x〉 with GKdim M3 = 1.

What are the most general solutions g(n, x) of this system?

Since ∂x(g) = 0, one has g(n, x) = g(n).
however, g(n) should not be identically zero:
in case n ∈ {−1, 0, 1, . . .}, one can select g(−1) ∈ K arbitrary
(step of the jump function).

Localization

The ideal 〈n + 1, sn〉 is two-sided and maximal. Hence the
submodule M3 vanishes under any nontrivial Ore localization
w. r. t S ⊂ K 〈n, sn . . .〉, for instance when n ∈ S or sn ∈ S (then
s−1
n is present and therefore n ∈ Z should hold). And S−1M is

then a pure module.
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The purity filtration of M = t(M) is 0 ( M3 ( M2 = M.
The pure part of GK dimension 2 is t(M)/M3

∼=

O/〈(x2− 1)∂2
x + 2x∂x − n(1 + n), (n + 2)S2

n − (2n + 3)xSn + n + 1,

(1− x2)∂x + (n + 1)Sn − (n + 1)x〉.
For further investigations of M over localizations w.r.t. n or Sn one
should then take the simplified equations from the ideal P ′ above.

Elimination leads to new identities

The elimination property guarantees, that 1 arbitrary variable of O
can be eliminated from P and from P ′; so one gets for instance

x−free : (n + 1)(n + 2) ·
(
(S2

n − 1)∂x − (2n + 3)Sn

)
• Pn(x) = 0,

n−free : (1− x2) ·
(
(S2

n − 2xSn + 1)∂x − Sn)
)
• Pn(x) = 0.
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The hypergeometric series is defined for |z | < 1 and −c /∈ N0 as
follows:

2F1(a, b, c ; z) =
∞∑

n=0

(a)n(b)n
(c)n

zn

n!

We derive two annihilating ideals from the anihilator of

2F1(a, b, c ; z):

Ja which does not contain a,

Jc which does not contain c ,

and analyze corresponding modules for purity.
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Case Ja

The ideal in O = K [b, c , z ]〈Sb, Sc,Dz | . . .〉 is generated by:

bcSb − czDz − bc

bSbSc − bSc + cSc − c

bSb2 − zSbDz − bSb + Sb2 − Sb

b2Sb − bzDz − b2 + bSb − zDz − b

bzSbDz − z2Dz2 − bzDz − bSbDz + zDz2 − bSb + bDz + b + Dz

Let M = Ma = O/Ja. Then GKdimO = 6,GKdim M = 4.

The purity filtration of M = t(M)

0 ( M5 = M4 ( M3 = M2 = M, where

M/M5
∼= O/〈bSb− zDz − b, zDzSc + cSc − c〉, GKdim M/M5 = 4
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The purity filtration of M = t(M)

. . . and

M5
∼= O/〈c ,Sb, b + 1, zDz − Dz − 1〉, GKdim M5 = 2.

The solutions can be read off:

δc,0 · δb,−1 · (ln(z − 1) + k0), k0 ∈ K
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Case Jc

The ideal in O = K [b, c , z ]〈Sb, Sc,Dz | . . .〉 is generated by:

aSa− bSb − a + b

bSb2 − SbzDz − bSb + Sb2 − Sb

b2Sb − bzDz − b2 + bSb − zDz − b

abSb − azDz − ab + bSb − zDz − b

bSbzDz − z2Dz2 − bSbDz − bzDz + zDz2 − bSb + bDz + b + Dz

Let M = Mc = O/Jc . Then GKdimO = 6,GKdim M = 4.

The purity filtration of M = t(M)

0 ( M6 = M5 = M4 ( M3 = M2 = M, where

M/M6
∼= O/〈bSb − zDz − b, aSa− zDz − a〉, GKdim M/M6 = 4.
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The purity filtration of M = t(M)

. . . and

M6
∼= O/〈Sb, b + 1,Sa, a + 1, zDz − Dz − 1〉, GKdim M6 = 2.

The solutions:

δa,−1 · δb,−1 · (ln(z − 1) + k0), k0 ∈ K
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Part V. Jacobson normal form.
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One of the most important questions in algebra is undecidable in
general:

Let A be a (Noetherian) K -algebra and M,N are two finitely
presented A-modules. Can we decide, whether M ∼= N as
A-modules?

Yet another application of localization as a functor:

Let S ⊂ A be a m. c. Ore set, then S−1A exists.
Given an A-module homomorphism ϕ : M → N (M,N are finitely
presented). Then there is an induced homomorphism of
S−1A-modules S−1ϕ : S−1M → S−1N.

Application to the isomorphism problem

If there exists such m. c. Ore set S̃ ⊂ A, that S̃−1ϕ is not an
isomorphism, then ϕ is not an isomorphism.
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Invariants

Above we have seen several dimensions of modules, some of them
are computable. What can one achieve with the help of
localization?

Let S = A \ {0}. Then the rank of f. g. A-module M is
defined to be dimS−1A S−1M.

Let R = A[∂;σ, δ] for an integral domain A and S = A \ {0}.
Then S−1M is a vector space over Quot(A) = S−1A and
dimS−1R S−1M is an invariant of the module.
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Jacobson, Teichmüller, Cohn

Let R be a non-commutative Euclidean domain and M ∈ Rm×n.
Then there exist

unimodular matrices U ∈ Rm×m, V ∈ Rn×n;

a matrix D ∈ Rm×n with elements d1, . . . , dr on the main
diagonal and 0 outside of the main diagonal . . .

such that di ||di+1 (total divisibility), meaning

O〈di+1〉O ⊆ O〈di 〉 ∩ 〈di 〉O

such that U ·M · V = D.

In particular there is an isomorphism of R-modules

R1×n/R1×mM ∼= R1×n/R1×mD.
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Recognizing the localization

L.–Schindelar (2011, 2012) presented two algorithms, computing
matrices U,V ,D by using Gröbner bases.

A fraction-free algorithm performs only operations over polynomial
(i.e. unlocalized) algebra. A minor modification allows to produce
matrices U,V ,D with polynomial entries.

Theorem (L.–Schindelar)

Let A be a G -algebra in variables x1, . . . , xn, ∂ and assume that
{x1, . . . , xn} generate a G -algebra B ( A. Suppose, there exists an
admissible monomial ordering ≺ on A, satisfying xk ≺ ∂ for all
1 ≤ k ≤ n. Then the following holds

B∗ is multiplicatively closed Ore set in A.

(B∗)−1A can be presented as an Ore extension of Quot(B) by
the variable ∂.
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Example

Let A1 be the polynomial and B1 = (K [x ] \ {0})−1A1 the rational
Weyl algebra. Consider the matrix

M =

[
∂2 − 1 ∂ + 1
∂2 + 1 ∂ − x

]
.

The algorithm returns

D =

[
x2∂2 + 2x∂2 + ∂2 − 2x∂ − 2∂ − x2 − 1 0

0 1

]
,

U =

[
−x∂ − ∂ + x2 + x + 1 x∂ + ∂ + x

∂ − x −∂ − 1

]
,

V =

[
1 0

x∂2 + ∂2 + 2∂ − x + 1 1

]
.
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Unimodularity of Matrices

Let us analyze, under which localizations U,V will be invertible.

Indeed, V is unimodular over A1, since it admits an inverse:

V−1 =

[
1 0

−(x + 1)∂2 + x − 2∂ − 1 1

]

On the contrary, U is NOT unimodular over A1, since U · Z = W
and W is first invertible in the localization:

Z =

[
2∂ + 2 (x + 1)∂ + x − 2

2(∂ − x) (x + 1)∂ − x2 − x − 3

]
,W =

[
0 −4x2 − 8x − 4
2 5x + 5

]

For the invertibility of W we need only to divide by x + 1 =: f .
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Lifting the isomorphism

Let f = x + 1. Then U from above will be unimodular over any
localization, where f is invertible. In particular, the smallest one,
as we know, is C1 := S−1

f A1, where Sf = {f i : i ∈ N}.

Thus the isomorphism of B1-modules, provided by the Jacobson
form, holds not only over B1 = (K [x ] \ {0})−1A1, but also over C1.

General strategy: depending on the concrete questions, analyze U
resp. V for unimodularity over localizations, less greedy than the
rational one.

Note: the steps of such an analysis are algorithmic.
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Recognize and lift localized problems

Strategical remarks for conclusion.

use the information from the localized situation - for instance,
implementations of numerous good algorithms - for the
analysis of the unlocalized, ”global” situation;

in algorithms:

perform fraction-free computations, if possible

or keep track of operations, requiring localized computations

use this tracking information and determine a smaller
localization, where desired properties still hold. Lift the
obtained results to that smaller localization.

study obstructions to the lifting: this provides several cases,
which again hints at the treatment of the problem at a global
level by using local ones.

obtain new powerful and useful results!
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