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Example: Hardy-Weinberg Equilibrium

Suppose a gene has two alleles, a and A. If allele a occurs in the
population with frequency 6 (and A with frequency 1 — ) and these
alleles are in Hardy-Weinberg equilibrium, the genotype frequencies
are

P(X = aa) = 02, P(X = aA) = 20(1 — 0),P(X = AA) = (1 — 0)?

The model of Hardy-Weinberg equilibrium is the set
M= {(92,29(1 —0),(1 -9)2) [0 elo, 1]} CAg

Z(M) = (Daa+Paat+paa—1, P2a—4PaaPan)
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Main Point of This Tutorial

@ Many statistical models are described by (semi)-algebraic
constraints on a natural parameter space.

o Generators of the vanishing ideal can be useful for constructing
algorithms or analyzing properties of statistical model.

@ Two Examples
@ Phylogenetic Algebraic Geometry
e Sampling Contingency Tables

Phylogenetics
Problem
Given a collection of species, find the tree that explains their history.

@ Data consists of aligned DNA sequences from homologous genes

Human: ...ACCGTGCAACGTGAACGA.. .
Chimp:  ...ACCTTGGAAGGTAAACGA. . .
Gorilla: . ..ACCGTGCAACGTAAACTA. ..
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Model-Based Phylogenetics

@ Use a probabilistic model of mutations

@ Parameters for the model are the combinatorial tree T, and rate
parameters for mutations on each edge

@ Models give a probability for observing a particular aligned
collection of DNA sequences

Human: ACCGTGCAACGTGAACGA
Chimp: ACGTTGCAAGGTAAACGA
Gorilla:  ACCGTGCAACGTAAACTA

@ Assuming site independence, data is summarized by empirical
distribution of columns in the alignment.

o e.g. P(AAA) = &, P(CGC) = 3, etc.

@ Use empirical distribution and test statistic to find tree best
explaining data
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Phylogenetic Models

@ Assuming site independence:

@ Phylogenetic Model is a latent class graphical model

o Vertex v € T gives a random variable X, € {a,C,G, T}

@ All random variables corresponding to internal nodes are latent

P(x1,%2,%3) = Y > P(y1)P(yaly1) P(x1]y1) P(xely2) P(xs|y2)
oy
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Phylogenetic Models

@ Assuming site independence:

@ Phylogenetic Model is a latent class graphical model

@ Vertex v € T gives a random variable X, € {a,C,G, T}

@ All random variables corresponding to internal nodes are latent

Piviis = Y D T8 jibi i Ci o i

ok
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Algebraic Perspective on Phylogenetic Models

@ Once we fix a tree T and model structure, we get a map
6T : 0 - RY.

@ © C RYis a parameter space of numerical parameters
(transition matrices associated to each edge).

o The map ¢ is given by polynomial functions of the parameters.

o Foreachii---ip € {A C,G, T}", qs,‘ i,(0) gives the probability of
the column (i, ...,in)" in the allgnment for the particular
parameter choice 0.

-
¢i‘ izis(ﬂ—» ab,c d)= Z Z Ty @y jy bf1 1 Ciz o dl'a,/'z
"

@ The phylogenetic model is the set M7 = ¢7(©) C RY".
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Phylogenetic Varieties and Phylogenetic Invariants

o Let R[p] := R[pj,..;, : it ---in € {A C, G, T}"]

Let
It .= (f e R[p] : f(p) =0 forall p e Mt) C R[p].

I is the ideal of phylogenetic invariants of T.
Let

Vr:={peR" :f(p)=0forall f e Ir}.
V7 is the phylogenetic variety of T.

@ Note that M7 C V7.
@ Since M is image of a polynomial map dim My = dim V7.

4
Z ;&b Cj1dim€xnfio

Pimno =
i=1 j=1 k=1
4 4 4
= Z > aiidim | - | D bikeunfio

=1 j=1 k=1
Pi111 P11z o0 Pri4g
P1211 P1212 T Pi24a
P4411 P441 2 - Pasaa

M‘“
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Splits and Phylogenetic Invariants

Definition

A split of a set is a bipartition A|B. A split A|B of the leaves of a tree T
is valid for T if the induced trees T|4 and T|g do not intersect.

), (o R (X
o Valid: 12/34

\/ o Not Valid: 13|24
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2-way Flattenings and Matrix Ranks

Pk =P(X1 =i, Xe =], X3 =k, Xa =)

PAAAA  PAAAC PAAAG “°  PAATT

PacAA  PAcac Pacac - PacTT
Flat12|34(P) = . . . . .

PTtmaAa  PrAC  PTTAG c PTTTT

Proposition

LetP e Mr.
@ If A|B is a valid split for T, then rank(Flata g(P)) < 4.
Invariants in It are subdeterminants of Flatg(P).
e If C|D is not a valid split for T, then generically
rank(Flatc‘D(P)) > 4.
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Phylogenetic Algebraic Geometry

Phylogenetic Algebraic Geometry is the study of the phylogenetic
varieties and ideals V7 and /7.

@ Using Phylogenetic Invariants to Reconstruct Trees

@ Identifiability of Phylogenetic Models

@ Interesting Math— Useful in Other Problems
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Using Phylogenetic Invariants to Reconstruct Trees

Definition

A phylogenetic invariant f € /7 is phylogenetically informative if there is
some other tree T’ such that f ¢ /7.

@ Idea of Cavender-Felsenstein (1987), Lake (1987):
Evaluate phylogenetically informative phylogenetic invariants at
empirical distribution p to reconstruct phylogenetic trees

Proposition

For each n-leaf trivalent tree T, let Fr C It be a set of phylogenetic
invariants such that, for each T' # T, there is an f € Fr, such that
¢ I

Let fr == ez |f].

Then for generic p € UM, fr(p) = 0 ifand only if p € M.
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Performance of Invariants Methods in Simulations

@ Huelsenbeck (1995) did a systematic simulation comparison of 26
different methods of constructing a phylogenetic tree on 4 leaf
trees. Invariant-based methods did poorly.

@ HOWEVER... Huelsenbeck only used linear invariants.

@ Casanellas, Fernandez-Sanchez (2006) redid these simulations
using a generating set of the phylogenetic ideal /7.
Phylogenetic invariants become comparable to other methods.

@ For the particular model studied in Casanellas,
Fernandez-Sanchez (2006) for a tree with 4 leaves, the ideal I+
has 8002 generators.

fri=>"Ifl

feFr
is a sum of 8002 terms.
@ Major work to overcome combinatorial explosion for larger trees.

Identifiability of Phylogenetic Models

Definition

A parametric statistical model is identifiable if it gives 1-to-1 map from
parameters to probability distributions.

@ “Is it possible to infer the parameters of the model from data?”
@ Identifiability guarantees consistency of statistical methods (ML)
@ Two types of parameters to consider for phylogenetic models:

o Numerical parameters (transition matrices)
o Tree parameter (combinatorial type of tree)
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Geometric Perspective on Identifiability

Definition

The unrooted tree parameter T in a phylogenetic model is identifiable if
for all
pEMr

there does not exist another T’ # T such that

peMry.

My

Mz

T— )

Identifiable Not Identifiable
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Generic Identifiability

Definition
The tree parameter in a phylogenetic model is generically identifiable if
for all n-leaf trees with T # T',

dim(M7 N M7/) < min(dim(M7), dim(M7)).
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Proving Identifiability with Algebraic Geometry Phylogenetic Models are Identifiable

Proposition

Let Mo and M, be two algebraic models. If there exist
phylogenetically informative invariants fy and f; such that

The unrooted tree parameter of phylogenetic models is generically
identifiable.

fi(p) = 0 for all p € M;, and fi(q) # 0 for some q € M;_;, then

dim(Mg N M1) < min(dim Mg, dim My).

o Edge flattening invariants can detect which splits are implied by a

Mo specific distribution in M.
) @ The splits in T uniquely determine T. O
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Phylogenetic Mixture Models Identifiability Questions for Mixture Models

@ Basic phylogenetic model assume same parameters at every site
@ This assumption is not accurate within a single gene

o Some sites more important: unlikely to change
@ Tree structure may vary across genes

For fixed number of trees r, are the tree parameters T,..., T;, and
rate parameters of each tree (generically) identified in phylogenetic
mixture models?

Y,

@ r =1 (Ordinary phylogenetic models)
Most models are identifiable on > 2, 3,4 leaves. ( Rogers, Chang,
Steel, Hendy, Penny, Székely, Allman, Rhodes, Housworth, ...)
@ r>1T;=T,=---= T, but no restriction on number of trees
Not identifiable (Matsen-Steel, Stefankovic-Vigoda)
@ r>1, T; arbitrary
@ Leads to mixture models for different classes of sites Not identifiable (Mossel-Vigoda)
@ M(T,r) denotes a same tree mixture model with underlying tree
T and r classes of sites
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How to Construct Phylogenetic Invariant

Theorem (Sturmfels-S, Allman-Rhodes, Casanellas-S,

Theorem (Rhodes-Sullivant 2011)
The unrooted tree and numerical parameters in a r-class, same tree Draisma-Kuttler)
phylogenetic mixture model on n-leaf trivalent trees are
generically identifiable, if r < 417/41,

Consider “nice” algebraic phylogenetic model. The problem of
computing phylogenetic invariants for any tree T can be reduced to the
same problem for star trees Ki .

| \

Proof Ideas.
@ Phylogenetic |nvar|ar?ts from flattenings . o The ideal /7 generated by local
@ Tensor rank (Kruskal’s Theorem) [Allman-Matias-Rhodes 2009] contributions from each K , plus
@ Elementary tree combinatorics flattening invariants from edges.
@ Solving tree and numerical parameter identifiability at the same @ The varieties Vi, , are interesting classical
time my Y algebraic varieties:
A o toric varieties

o secant varieties

Y Y o Sect(P3 x P? x P9)

Seth Sullivant (NCSU) Algebraic Statistics July 22,2012 / Seth Sullivant (NCSU) Algebraic Statistics July 22,2012 24/32



Group-based models

a g BB a B oy v a B v 0
<a6> B a B B B oa v v B oa & v
8 «a B8 B a B vy oa B v 6 a B
B8 B B «a 7Y B «a iy B a

@ Random variables in finite abelian group G.

@ Transitions probabilities satisfy Prob(X = g|Y = h) = f(g + h).

@ This means that the formula for Prob(X; = g4,..., Xn=gn) is a
convolution (over G").

@ Apply discrete Fourier transform to turn convolution into a product.

Theorem (Hendy-Penny 1993, Evans-Speed 1993)

In the Fourier coordinates, a group-based model is parametrized by
monomial functions in terms of the Fourier parameters.
In particular, the CFN model is a toric variety.
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Equations for the CFN Model

Theorem (Sturmfels-S 2005)

For any tree T, the toric ideal I for the CFN model is generated by
degree 2 determinantal equations.

Fourier coordinates:
Qimno = Er,s,t,ue{oj } (—1)trsmiintuop, o,

IT generated by 2 x 2 minors of:

Qoooo  Goot1 Gooot  doot1o
Qo100 o111 Qo101 o110

1 1011 1001 G101
() IR e Rt
G1o00 G1001  Gio10  Gro11

Qoooo dooo1  Gooto  QGoott
Q1100 Q1101 Q1110 Gri1d
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Gluing Two Trees at a Leaf

Lo

@ Let T = Ty#T,, tree obtained by joining two trees at a leaf.

@ Eachring C[p]/I,, C[p]/Ir, is invariant under action of group
G = GI,(C)¥ acting on the glue leaves.

Theorem (Draisma-Kuttler)

o Clpl/Ir = (Clpl/Ir, ©c Clol/Ir,)°
e V= (VT‘ X VTZ)//Q (GITquotient)

@ Actions of individual factors (Gl,(C)) do no interact.
@ Use Reynolds operator and first fundamental theorem of CIT.
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Summary: Phylogenetic Algebraic Geometry

@ Phylogenetic models are fundamentally algebraic-geometric
objects.
@ Algebraic perspective is useful for:
o Developing new construction algorithms
e Proving theorems about identifiability (currently best available for
mixture models)
@ Leads to interesting new mathematics, useful for other problems

@ Long way to go: Your Help Needed!
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Gluing more complex graphs

aiufun QRN

@ Still a group action (Gl1,(C
@ But factors are not acting mdependently.
o Clpl/le # (Clpl/la, ©c Clpl/ls,)¢

@ C[p]/lg generated by degree 1 part of (C[p]/lg, ®c C[p]/lg,)¢
(toric fiber product if r = 1)

Theorem (Engstrom-Kahle-S)

Can determine generators of Ig from I, and Ig, if the TFP has “low
codimension’”.

@ Useful for other problems in algebraic statistics.

Seth Sullivant (NCSU) Algebraic Statistics July 22,2012 28/32

Theorem (Allman-Rhodes 2006)

Let T be a trivalent tree with n leaves, and consider the general
Markov model on binary characters. The phylogenetic ideal I+ has
generating set

U {8 x 8 minors of Flatyg(P)}
AlBex(T)

where ¥(T) is the set of all valid splits on T. Note that P is a
2x2x---x2, n-way tensor.

| \

Problem
For the 5 leaf tree at the right and write 1 2 4
down all the matrices Flaty (P) that are > I (
needed in the previous theorem. P .
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Generating Random Tables

Problem

Generate a random table from the set of all nonnegative k4 x ko
integer tables with given row and column sums.

n
2
3

Ci|C|C3|Cs

Fisher's Exact Test, Missing Data Problems

Random Walk
[Z1z12e] [T o170 [312[7T%]
[212T2]6] + [(=A]o[ 1 0] OT=2T1s15%]
I I N | [oJolTo[ 1] [aTaT4T ]
[BT2]7]6] [T T-TT0]0] [ATTT1e]
Clzislie] + 17 10l0] - [0]5[51%]
FIesl 1 [0 100 | [lelel ]

G NG D N (A )
allow for a connected random walk
over these contingency tables.
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Connecting Lattice Points in Polytopes

Definition

o Let A: Z" — 79 a linear transformation, b € Z9.
o A'[b] == {x € N" : Ax = b} (fiber)
@ BcCkerz A

Let A='[b] be the graph with vertex set A='[b] and u — —v an edge if
andonly u—v € £B.

Problem
Given A and b, find finite B C kerz A such that A~ [b]5 is connected.

Definition

If B C kerz Ais a set such that A~ [b]s is connected for all b, then B is
a Markov basis for A.

Example: 2-way tables

Let A: Zkixke _ 7kt gych that

m m k k
(Z U1j»~-~azuk|jizui17--wzuikz)
j=1 j=1 i=1 i=1

= vector of row and column sums of u

A(u)

kerz(A) = {u € Z¥*k . row and columns sums of u are 0}
Markov basis consists of the 2(%) () moves like:

0 0 0 O
1 0 -1 0
-10 1 0
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3-way tables

Let A : Zkixkexks _, zhixketkixksthexks pe the linear transformation
such that

Alu) = ((Z Uigipiy it o’ (Z Uisiplg i’ (Z uﬁizl's)fzyis)
i iz it

all 2-way margins of 3-way table u
all “line sums” of u.

Markov basis depends on ki, ko, k3, contains moves like:
& OGE )

but also non-obvious moves like:

1 -1 0 —1 1 0 0 0 0 0o -1 1 0 1 —1
—1 1 0 0 0 0 1 0o -1 0 0 0 0o -1 1
0 0 0 1 -1 0 -1 0 1 0 1 -1 0 0 0

Seth Sullivant (NCSU) Algebraic Statistics June 10, 2012 6/28



Fundamental Theorem of Markov Bases

Let A: Z" — 79. The toric ideal /4 is the ideal
(P! —p":u,veN", Au=Av) CK[p,...,pnl,

where p! = p{pg? - - ph".

Theorem (Diaconis-Sturmfels 1998)

The set of moves B C kerz A is a Markov basis for A if and only if the
set of binomials {p?" — p?” : b € B} generates I,.

0 0 0 O
10 -10 —  P21P33 — P23P31

-10 1 0
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Definition

Toric Varieties = Log-linear Models

The variety V4 = V/(l4) is a toric variety. The statistical model
My = V(la) N Ap is a log-linear model.

@ Mp={peAp:logp € rowspan A}.
@ Fisher’s exact test: Does the data u fit the model M 4?

L]
w/jull

2-way tables: Independence

0O 0 0 O Por Do
1.0 -10 —  DP21Pas — Paspar = | 21 28

10 1 o0 P31 P33
P11 P12 o Pk
Ia = (2 x 2 minors of ,D:21 p:22 p2:k2 )
P;;n Pk.12 Pk;kz

Va = V(la) = {PeRM*® : rank P < 1}

Ma=VanDik, = My, 11 x,
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Computing Markov Bases

@ Software

@ 4ti2 www.4ti2.de

o Macaulay?2 (4ti2 interface)

http://www.math.uiuc.edu/Macaulay2/

o Singular (toric package) http://www.singular.uni-kl.de/
@ Theory

o Gluing Results

o Finiteness Theorems

o Special Configurations

“No Hope” Theorem

Theorem (De Loera-Onn (2006))
@ Every integer vector appears as part of a minimal Markov basis
element for 3 x ky x kg tables (with fixed 2-way margins).

@ In particular, minimal Markov basis elements for 3-way tables can
have arbitrarily large entries and arbitrarily large 1-norm.

Example (3 x 4 x 6-tables)
@ For 3 x 4 x 6 tables, minimal Markov basis has 355950 elements.
@ Largest element has 1-norm 28.
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Which Fibers are Connected?

Let B C kerz A. For which b is A='[b]5 connected? When do
u,v € A~'[b] belong to the same component of A~'[b]?

Example (2 x 3)

s={(*, 7 0).
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Enter Commutative Algebra

Lattice Walks and Primary Decomposition

(Diaconis-Eisenbud-Sturmfels 1998)

Let K[p] := K[py, ..., pn]. To each m € B associate a binomial

p™ —p™ € Klp]
@ Decompose ideal Iz = N;jl;.
e pl—pelge p'—pYelforalli.

where m=mt —m~, p™ = p{" - pfn.

Let B C kerz A. Then u,v € A~'[b] are in the same component of .
A-[b]s if and only if Theorem (Eisenbud-Sturmfels 1996)
. 5 Every binomial ideal has a binomial primary decomposition.
pY—pYelg:=p™ —p™ :meB).
@ Dickenstein-Matusevich-Miller, Kahle-Miller (Mesoprimary
Theorem (Diaconis-Sturmfels (1998)) decomposition)
A set of moves B C kerz A is a Markov basis if and only if @ Algorithms implemented in binomials.m2 (Kahle 2010)

Ig = lq:=(p" —p": u,v e N Au = Av).

‘ .
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2 x 3 tables Graphical Models

g (1 1o 0o 1 -1
T\ 10 0o -1 1 @ G agraph, N-vertices.
ede ZN, d,' > 2.
g = <‘ P11 P12 ‘ ' P12 P13 '> @ Gives set of margins of d; x db x --- x dj array.
P21 Pe2 || P22 Pes @ C(G) = set of maximal cliques in G.
P11 P12 P12 P13 P11 P13
= ; , n ; =T
<‘ P21 P22 ‘ ' P22 P23 ' ‘ P21 P23 > (Par: Pe2) Definition
= laN (P21, P22) Let
Agg : ZO* 0 5 7k
(uﬂ Uy u13> <v11 Vio v13> connected by 5 if and only if be the linear map that computes the margins associated to all
Upy Uop Upg) \Voi Voo Vog CeC(G),ofad; x - x dy array.

@ they have the same row and column sums and
@ Uyo + Uop = Vi + Voo > 0.
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Example (Row and Column Sums)

AGd . Zd1><d2><d3 N Zd1><dg+d1><d3
AGd B Zd'Xdz — Zd'+d2 w Y
’ ()i = (- uie)igs O uiw)ik)
© o (i = (3w (X ) ; :
j i
/ d=(2,2,3)
Example (Path)
111000000000
Ag,q 1 ZO*0%x% _; gohxdatdixds 000111000000
’ 000000111000
(wi)ik = (O )iy O Ui)ik) 0000000001 1 1
3 7 A _|TOOT 00000000
/ G4=1 01 00100000O00O0
Example (4-cycle) 001001000O0O0O0TO0
0000001007100
0 G 000000O0100T10
Agq : Z %X X0 _y 701X 0ot X +dpx 05Xy 000000001001
© D C(G) = {{1,2},{1,8},{2,4},{3,4}} U = (Ug11, U112, U113, U121, U122, U123, U211, U212, U213, U221, Uzo2, Uzo3)
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Separating Moves (Conditional Independence) Which Fibers Do C/(G) Moves Connect?

@ Let A, B, C partition V(G) such that C separates A and Bin G.

@ Get moves Proposition (Hammersley-Clifford, Besag (1974))
Cinislc + Cpioic = Cijsic ~ Cluiic CI(G) spans kerz, Ag g for all G

where in, ja € [Tiealdt], i, J5 € [Tiesldt], ic € [Tiecldi] in
kerz Ag q-

Theorem (Dobra (2002), Geiger, Meek, Sturmfels (2006))

-1

@ These moves naturally generalize <j1 1

> for 2-way tables. Separating moves CI(G) are a Markov basis for Ag 4 if and only if G is

a chordal graph.
@ CI(G) is set of all separating moves. grap

Problem

Example (4-cycle)

b fi =i
@ Which fibers Ag,qlb] are connected by CI(G) for other graphs?
Ciiipiiy T ©jininys — Cirininjs — ©jiininiy @ What is the primary decomposition of /¢yg)?
Cirigigis T Citjofis — Ciriajsiy — Cirfoily
Q ®
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Computational Results 2 x 3 tables

Theorem (Kahle-Rauh-S (2012)) B— {<j1 ‘11 g) : (g j1 ‘11>}
Let#V(G)=n<5,d; =2foralli. Then

® log) Is radical. P11 P12 | | P12 P13

o Aa\jd[b]c,(g) is connected if b is in the interior of the marginal cone. ls = <‘ Pot P2 || P22 P23 >

° Agfd [blciq) is connected if b is positive (except for G = Ka3). = lan (pa1, pe2)

@ Every prime component /s of the form Ps = (p; : i € S) + 4. o Analyze monomial ideal Pg = (P, p2)

@ Form vector ug := 3 jss €. 10 1
@ Check if Aug is on boundary of marginal cone for all prime @ Us= <1 0 1)
components.

@ ug has a zero column sum
@ = all fibers with positive margins (row and column sums) are
connected.
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@ If so B has interior point property.

Theoretical Results Proof Ideas

Proposition (Kahle-Rauh-S (2012))

If G = Gi1#Gg is a clique sum, then

@ IfIgya,y and lgyg,) radical, so is Igyg)- @ Find minimal primes for /cyg). All binomial ideals.
@ If Gy and G; satisfy interior point property, so does G. o LetJ=/Igyg) = lag, N mf.‘=1 P;.
o If Gy and G, satisfy positive margins property, so does G. @ Let u,vsuchthat Ag qu = Ag gV, s0 p* — p* € Ia.

@ Connect u and v using Markov basis moves of Ag 4.

@ Show that p“ — p¥ € P; for all i, implies we can shortcut moves
with C/(G) moves.

@ Deduce that J = ICI(G)-

Theorem (Kahle-Rauh-S (2012)) @ Depends on having Markov basis of Ag 4, which is obtained in
these cases via toric fiber product. (Engstrém, Kahle, S 2011)

@ Forcycle Cy, Icyc,) is radical, when d; = 2 for all i.
Q ForKyp withdy = db =2, leik, ) is radical.

@ Interior point property holds in both situations.
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Questions

@ Many statistical problems require the construction of random
walks over the lattice points in a polytope.

@ A Markov basis provides connectivity for all b.

@ If Markov basis too hard to compute, can ask: Which fibers are
connected by a “natural” set of moves?

o Is Igyg) radical for all G, d?
@ Does interior point property hold for all G, d?

If there are n — 2 mutually orthogonal d' x d' latin squares, then for

any 2-connected, triangle free graph on G nodes, and d; = d’ for all i, @ Binomial primary decomposition gives information about
the interior point property does not hold for (G, d). connectivity of fibers with subset of Markov basis.
@ Computational and theoretical advances allow us to make
@ For C4 and d = (3,3, 3, 3) gives failure of interior point property. progress on graphical models.

@ Radicality fails for K33 and d = (2,2,2,2,2,2).
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