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Example: Hardy-Weinberg Equilibrium

Suppose a gene has two alleles, a and A. If allele a occurs in the

population with frequency θ (and A with frequency 1 − θ) and these

alleles are in Hardy-Weinberg equilibrium, the genotype frequencies

are

P(X = aa) = θ2, P(X = aA) = 2θ(1 − θ), P(X = AA) = (1 − θ)2

The model of Hardy-Weinberg equilibrium is the set

M =
��

θ2, 2θ(1 − θ), (1 − θ)2
�

| θ ∈ [0, 1]
�

⊂ ∆3

I(M) = �paa+paA+pAA−1, p2
aA−4paapAA�
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Main Point of This Tutorial

Many statistical models are described by (semi)-algebraic
constraints on a natural parameter space.

Generators of the vanishing ideal can be useful for constructing

algorithms or analyzing properties of statistical model.

Two Examples

Phylogenetic Algebraic Geometry

Sampling Contingency Tables
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Phylogenetics

Problem

Given a collection of species, find the tree that explains their history.

Data consists of aligned DNA sequences from homologous genes

Human: ...ACCGTGCAACGTGAACGA...

Chimp: ...ACCTTGGAAGGTAAACGA...

Gorilla: ...ACCGTGCAACGTAAACTA...
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Model-Based Phylogenetics

Use a probabilistic model of mutations

Parameters for the model are the combinatorial tree T , and rate

parameters for mutations on each edge

Models give a probability for observing a particular aligned

collection of DNA sequences

Human: ACCGTGCAACGTGAACGA

Chimp: ACGTTGCAAGGTAAACGA

Gorilla: ACCGTGCAACGTAAACTA

Assuming site independence, data is summarized by empirical

distribution of columns in the alignment.

e.g. p̂(AAA) = 6
18 , p̂(CGC) = 2

18 , etc.

Use empirical distribution and test statistic to find tree best

explaining data
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Phylogenetic Models

Assuming site independence:

Phylogenetic Model is a latent class graphical model

Vertex v ∈ T gives a random variable Xv ∈ {A,C,G,T}

All random variables corresponding to internal nodes are latent

X1
X2

X3

Y 2

Y 1

P(x1, x2, x3) =
�

y1

�

y2

P(y1)P(y2|y1)P(x1|y1)P(x2|y2)P(x3|y2)
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Phylogenetic Models

Assuming site independence:

Phylogenetic Model is a latent class graphical model

Vertex v ∈ T gives a random variable Xv ∈ {A,C,G,T}

All random variables corresponding to internal nodes are latent

X1
X2

X3

Y 2

Y 1

pi1i2i3 =
�

j1

�

j2

πj1aj2,j1bi1,j1ci2,j2di3,j2
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Algebraic Perspective on Phylogenetic Models

Once we fix a tree T and model structure, we get a map

φT : Θ → R
4n

.

Θ ⊆ R
d is a parameter space of numerical parameters

(transition matrices associated to each edge).

The map φT is given by polynomial functions of the parameters.

For each i1 · · · in ∈ {A,C,G,T}n, φT
i1···in

(θ) gives the probability of

the column (i1, . . . , in)
� in the alignment for the particular

parameter choice θ.

φT
i1i2i3

(π, a, b, c, d) =
�

j1

�

j2

πj1aj2,j1bi1,j1ci2,j2di3,j2

The phylogenetic model is the set MT = φT (Θ) ⊆ R
4n

.
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Phylogenetic Varieties and Phylogenetic Invariants

Let R[p] := R[pi1···in : i1 · · · in ∈ {A,C,G,T}n]

Definition

Let

IT := �f ∈ R[p] : f (p) = 0 for all p ∈ MT � ⊆ R[p].

IT is the ideal of phylogenetic invariants of T .

Let

VT := {p ∈ R
4n

: f (p) = 0 for all f ∈ IT}.

VT is the phylogenetic variety of T .

Note that MT ⊂ VT .

Since MT is image of a polynomial map dimMT = dim VT .
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X
1

X XX
2

3 4

plmno =
4

�

i=1

4
�

j=1

4
�

k=1

πiai jbikcj ldjmeknfko

=
4

�

i=1

πi









4
�

j=1

ai jcj ldjm



 ·





4
�

k=1

bikeknfko









=⇒ rank









p1111 p1112 · · · p1144

p1211 p1212 · · · p1244

...
...

. . .
...

p4411 p4412 · · · p4444









≤ 4
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Splits and Phylogenetic Invariants

Definition

A split of a set is a bipartition A|B. A split A|B of the leaves of a tree T

is valid for T if the induced trees T |A and T |B do not intersect.

X
1

X XX
2

3 4

Valid: 12|34

Not Valid: 13|24
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2-way Flattenings and Matrix Ranks

pijkl = P(X1 = i ,X2 = j ,X3 = k ,X4 = l)

Flat12|34(P) =











pAAAA pAAAC pAAAG · · · pAATT

pACAA pACAC pACAG · · · pACTT
...

...
...

. . .
...

pTTAA pTTAC pTTAG · · · pTTTT











Proposition

Let P ∈ MT .

If A|B is a valid split for T , then rank(FlatA|B(P)) ≤ 4.
Invariants in IT are subdeterminants of FlatA|B(P).

If C|D is not a valid split for T , then generically

rank(FlatC|D(P)) > 4.
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Phylogenetic Algebraic Geometry

Phylogenetic Algebraic Geometry is the study of the phylogenetic

varieties and ideals VT and IT .

Using Phylogenetic Invariants to Reconstruct Trees

Identifiability of Phylogenetic Models

Interesting Math– Useful in Other Problems
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Using Phylogenetic Invariants to Reconstruct Trees

Definition

A phylogenetic invariant f ∈ IT is phylogenetically informative if there is

some other tree T � such that f /∈ IT � .

Idea of Cavender-Felsenstein (1987), Lake (1987):

Evaluate phylogenetically informative phylogenetic invariants at

empirical distribution p̂ to reconstruct phylogenetic trees

Proposition

For each n-leaf trivalent tree T , let FT ⊆ IT be a set of phylogenetic

invariants such that, for each T � �= T , there is an f ∈ FT , such that

f � /∈ IT � .

Let fT :=
�

f∈FT
|f |.

Then for generic p ∈ ∪MT , fT (p) = 0 if and only if p ∈ MT .
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Performance of Invariants Methods in Simulations

Huelsenbeck (1995) did a systematic simulation comparison of 26

different methods of constructing a phylogenetic tree on 4 leaf

trees. Invariant-based methods did poorly.

HOWEVER... Huelsenbeck only used linear invariants.

Casanellas, Fernandez-Sanchez (2006) redid these simulations

using a generating set of the phylogenetic ideal IT .

Phylogenetic invariants become comparable to other methods.

For the particular model studied in Casanellas,

Fernandez-Sanchez (2006) for a tree with 4 leaves, the ideal IT
has 8002 generators.

fT :=
�

f∈FT

|f |

is a sum of 8002 terms.

Major work to overcome combinatorial explosion for larger trees.
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Identifiability of Phylogenetic Models

Definition

A parametric statistical model is identifiable if it gives 1-to-1 map from

parameters to probability distributions.

“Is it possible to infer the parameters of the model from data?”

Identifiability guarantees consistency of statistical methods (ML)

Two types of parameters to consider for phylogenetic models:

Numerical parameters (transition matrices)

Tree parameter (combinatorial type of tree)
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Geometric Perspective on Identifiability

Definition

The unrooted tree parameter T in a phylogenetic model is identifiable if

for all

p ∈ MT

there does not exist another T � �= T such that

p ∈ MT � .

M1

M2

M3

Identifiable

M1 M2

Not Identifiable
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Generic Identifiability

Definition

The tree parameter in a phylogenetic model is generically identifiable if

for all n-leaf trees with T �= T � ,

dim(MT ∩MT �) < min(dim(MT ), dim(MT �)).

M1

M2

M3
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Proving Identifiability with Algebraic Geometry

Proposition

Let M0 and M1 be two algebraic models. If there exist

phylogenetically informative invariants f0 and f1 such that

fi(p) = 0 for all p ∈ Mi , and fi(q) �= 0 for some q ∈ M1−i , then

dim(M0 ∩M1) < min(dimM0, dimM1).

M
f = 0

0

M1
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Phylogenetic Models are Identifiable

Theorem

The unrooted tree parameter of phylogenetic models is generically

identifiable.

Proof.

Edge flattening invariants can detect which splits are implied by a

specific distribution in MT .

The splits in T uniquely determine T .
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Phylogenetic Mixture Models

Basic phylogenetic model assume same parameters at every site

This assumption is not accurate within a single gene

Some sites more important: unlikely to change

Tree structure may vary across genes

Leads to mixture models for different classes of sites

M(T , r) denotes a same tree mixture model with underlying tree

T and r classes of sites
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Identifiability Questions for Mixture Models

Question

For fixed number of trees r , are the tree parameters T1, . . . ,Tr , and

rate parameters of each tree (generically) identified in phylogenetic

mixture models?

r = 1 (Ordinary phylogenetic models)

Most models are identifiable on ≥ 2, 3, 4 leaves. ( Rogers, Chang,

Steel, Hendy, Penny, Székely, Allman, Rhodes, Housworth, ...)

r > 1 T1 = T2 = · · · = Tr but no restriction on number of trees

Not identifiable (Matsen-Steel, Stefankovic-Vigoda)

r > 1, Ti arbitrary

Not identifiable (Mossel-Vigoda)
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Theorem (Rhodes-Sullivant 2011)

The unrooted tree and numerical parameters in a r-class, same tree

phylogenetic mixture model on n-leaf trivalent trees are

generically identifiable, if r < 4�n/4�.

Proof Ideas.

Phylogenetic invariants from flattenings

Tensor rank (Kruskal’s Theorem) [Allman-Matias-Rhodes 2009]

Elementary tree combinatorics

Solving tree and numerical parameter identifiability at the same

time
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How to Construct Phylogenetic Invariants?

Theorem (Sturmfels-S, Allman-Rhodes, Casanellas-S,
Draisma-Kuttler)

Consider “nice” algebraic phylogenetic model. The problem of

computing phylogenetic invariants for any tree T can be reduced to the

same problem for star trees K1,k .

The ideal IT generated by local

contributions from each K1,k , plus

flattening invariants from edges.

The varieties VK1,k
are interesting classical

algebraic varieties:

toric varieties

secant varieties

Sec4(P3 × P
3 × P

3)
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Group-based models

�

α β

β α

�









α β β β

β α β β

β β α β

β β β α

















α β γ γ

β α γ γ

γ γ α β

γ γ β α

















α β γ δ

β α δ γ

γ δ α β

δ γ β α









Random variables in finite abelian group G.

Transitions probabilities satisfy Prob(X = g|Y = h) = f (g + h).

This means that the formula for Prob(X1 = g1, . . . ,Xn = gn) is a

convolution (over Gn).

Apply discrete Fourier transform to turn convolution into a product.

Theorem (Hendy-Penny 1993, Evans-Speed 1993)

In the Fourier coordinates, a group-based model is parametrized by

monomial functions in terms of the Fourier parameters.

In particular, the CFN model is a toric variety.
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Equations for the CFN Model

Theorem (Sturmfels-S 2005)

For any tree T , the toric ideal IT for the CFN model is generated by

degree 2 determinantal equations.

X
1

X XX
2

3 4 Fourier coordinates:

qlmno =
�

r ,s,t ,u∈{0,1}(−1)rl+sm+tn+uoprstu

IT generated by 2 × 2 minors of:

�

q0000 q0001 q0010 q0011

q1100 q1101 q1110 q1111

�

�

q0100 q0101 q0110 q0111

q1000 q1001 q1010 q1011

�









q0000 q0011

q0100 q0111

q1000 q1011

q1100 q1111

















q0001 q0010

q0101 q0110

q1001 q1010

q1101 q1110








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Gluing Two Trees at a Leaf

Let T = T1#T2, tree obtained by joining two trees at a leaf.

Each ring C[p]/IT1
, C[p]/IT2

is invariant under action of group

G = Glr (C)
k acting on the glue leaves.

Theorem (Draisma-Kuttler)

C[p]/IT ∼= (C[p]/IT1
⊗C C[p]/IT2

)G

VT = (VT1
× VT2

)//G (GIT quotient)

Actions of individual factors (Glr (C)) do no interact.

Use Reynolds operator and first fundamental theorem of CIT.
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Gluing more complex graphs

+ =

+ =

Still a group action (Glr (C)
k ).

But factors are not acting independently.

C[p]/IG �∼= (C[p]/IG1
⊗C C[p]/IG2

)G

C[p]/IG generated by degree 1 part of (C[p]/IG1
⊗C C[p]/IG2

)G

(toric fiber product if r = 1)

Theorem (Engström-Kahle-S)

Can determine generators of IG from IG1
and IG2

if the TFP has “low

codimension”.

Useful for other problems in algebraic statistics.
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Summary: Phylogenetic Algebraic Geometry

Phylogenetic models are fundamentally algebraic-geometric

objects.

Algebraic perspective is useful for:

Developing new construction algorithms

Proving theorems about identifiability (currently best available for

mixture models)

Leads to interesting new mathematics, useful for other problems

Long way to go: Your Help Needed!
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Problems

Theorem (Allman-Rhodes 2006)

Let T be a trivalent tree with n leaves, and consider the general

Markov model on binary characters. The phylogenetic ideal IT has

generating set

�

A|B∈Σ(T )

{3 × 3 minors of FlatA|B(P)}

where Σ(T ) is the set of all valid splits on T . Note that P is a

2 × 2 × · · ·× 2, n-way tensor.

Problem

For the 5 leaf tree at the right and write

down all the matrices FlatA|B(P) that are

needed in the previous theorem.

1 2

3

4

5
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Generating Random Tables

Problem

Generate a random table from the set of all nonnegative k1 × k2

integer tables with given row and column sums.

r1

r2

r3

c1 c2 c3 c4

Fisher’s Exact Test, Missing Data Problems
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Random Walk

2 2 2 6

2 2 2 6

4 4 4

+

1 0 −1 0

−1 0 1 0

0 0 0

=

3 2 1 6

1 2 3 6

4 4 4

3 2 1 6

1 2 3 6

4 4 4

+

1 −1 0 0

−1 1 0 0

0 0 0

=

4 1 1 6

0 3 3 6

4 4 4

��

1 −1 0
−1 1 0

�

,

�

1 0 −1
−1 0 1

�

,

�

0 1 −1
0 −1 1

��

allow for a connected random walk

over these contingency tables.
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Connecting Lattice Points in Polytopes

Definition

Let A : Zn → Z
d a linear transformation, b ∈ Z

d .

A−1[b] := {x ∈ N
n : Ax = b} (fiber)

B ⊂ kerZ A

Let A−1[b]B be the graph with vertex set A−1[b] and u −−v an edge if

and only u − v ∈ ±B.

Problem

Given A and b, find finite B ⊆ kerZ A such that A−1[b]B is connected.

Definition

If B ⊆ kerZ A is a set such that A−1[b]B is connected for all b, then B is

a Markov basis for A.
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Example: 2-way tables

Let A : Zk1×k2 → Z
k1+k2 such that

A(u) =





m
�

j=1

u1j , . . . ,

m
�

j=1

uk1j ;
k

�

i=1

ui1, . . . ,

k
�

i=1

uik2





= vector of row and column sums of u

kerZ(A) = {u ∈ Z
k1×k2 : row and columns sums of u are 0}

Markov basis consists of the 2
�

k1
2

��

k2
2

�

moves like:





0 0 0 0

1 0 −1 0

−1 0 1 0




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3-way tables

Let A : Zk1×k2×k3 → Z
k1×k2+k1×k3+k2×k3 be the linear transformation

such that

A(u) =



(
�

i3

ui1i2i3)i1,i2 ; (
�

i2

ui1i2i3)i1i3 ; (
�

i1

ui1i2i3)i2,i3





= all 2-way margins of 3-way table u

= all “line sums” of u.

Markov basis depends on k1, k2, k3, contains moves like:

�

1 −1
−1 1

��

−1 1
1 −1

�

but also non-obvious moves like:




1 −1 0
−1 1 0
0 0 0









−1 1 0
0 0 0
1 −1 0









0 0 0
1 0 −1
−1 0 1









0 −1 1
0 0 0
0 1 −1









0 1 −1
0 −1 1
0 0 0




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Fundamental Theorem of Markov Bases

Definition

Let A : Zn → Z
d . The toric ideal IA is the ideal

�pu − pv : u, v ∈ N
n
,Au = Av� ⊂ K[p1, . . . , pn],

where pu = p
u1

1 p
u2

2 · · · pun
n .

Theorem (Diaconis-Sturmfels 1998)

The set of moves B ⊆ kerZ A is a Markov basis for A if and only if the

set of binomials {pb+
− pb−

: b ∈ B} generates IA.





0 0 0 0

1 0 −1 0

−1 0 1 0



 −→ p21p33 − p23p31
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Toric Varieties = Log-linear Models

Definition

The variety VA = V (IA) is a toric variety. The statistical model

MA = V (IA) ∩∆m is a log-linear model.

MA = {p ∈ ∆m : log p ∈ rowspan A}.

Fisher’s exact test: Does the data u fit the model MA?

u/||u||
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2-way tables: Independence





0 0 0 0

1 0 −1 0

−1 0 1 0



 −→ p21p33 − p23p31 =

�

�

�

�

p21 p23

p31 p33

�

�

�

�

IA = �2 × 2 minors of











p11 p12 · · · p1k2

p21 p22 · · · p2k2

...
...

. . .
...

pk11 pk12 · · · pk1k2











�

VA = V (IA) = {P ∈ R
k1×k2 : rank P ≤ 1}

MA = VA ∩∆k1k2
= MX1⊥⊥X2
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Computing Markov Bases

Software

4ti2 www.4ti2.de

Macaulay2 (4ti2 interface)

http://www.math.uiuc.edu/Macaulay2/

Singular (toric package) http://www.singular.uni-kl.de/

Theory

Gluing Results

Finiteness Theorems

Special Configurations
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“No Hope” Theorem

Theorem (De Loera-Onn (2006))

Every integer vector appears as part of a minimal Markov basis

element for 3 × k2 × k3 tables (with fixed 2-way margins).

In particular, minimal Markov basis elements for 3-way tables can

have arbitrarily large entries and arbitrarily large 1-norm.

Example (3 × 4 × 6-tables)

For 3 × 4 × 6 tables, minimal Markov basis has 355950 elements.

Largest element has 1-norm 28.
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Which Fibers are Connected?

Problem

Let B ⊆ kerZ A. For which b is A−1[b]B connected? When do

u, v ∈ A−1[b] belong to the same component of A−1[b]B?

Example (2 × 3)

B =

��

1 −1 0

−1 1 0

�

,

�

0 1 −1

0 −1 1

��

6

6

4 4 4
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Enter Commutative Algebra

Let K[p] := K[p1, . . . , pn]. To each m ∈ B associate a binomial

pm+
− pm−

∈ K[p]

where m = m+ − m−, pm = p
m1

1 · · · pmn
n .

Proposition

Let B ⊆ kerZ A. Then u, v ∈ A−1[b] are in the same component of

A−1[b]B if and only if

pu − pv ∈ IB := �pm+
− pm−

: m ∈ B�.

Theorem (Diaconis-Sturmfels (1998))

A set of moves B ⊆ kerZ A is a Markov basis if and only if

IB = IA := �pu − pv : u, v ∈ N
n
,Au = Av�.
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Lattice Walks and Primary Decomposition

(Diaconis-Eisenbud-Sturmfels 1998)

Decompose ideal IB = ∩i Ii .

pu − pv ∈ IB ⇔ pu − pv ∈ Ii for all i .

Hope that ideal Ii are easier to analyze.

Theorem (Eisenbud-Sturmfels 1996)

Every binomial ideal has a binomial primary decomposition.

Dickenstein-Matusevich-Miller, Kahle-Miller (Mesoprimary

decomposition)

Algorithms implemented in binomials.m2 (Kahle 2010)
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2 × 3 tables

B =

��

1 −1 0

−1 1 0

�

,

�

0 1 −1

0 −1 1

��

IB =

��

�

�

�

p11 p12

p21 p22

�

�

�

�

,

�

�

�

�

p12 p13

p22 p23

�

�

�

�

�

=

��

�

�

�

p11 p12

p21 p22

�

�

�

�

,

�

�

�

�

p12 p13

p22 p23

�

�

�

�

,

�

�

�

�

p11 p13

p21 p23

�

�

�

�

�

∩ �p21, p22�

= IA ∩ �p21, p22�

�

u11 u12 u13

u21 u22 u23

� �

v11 v12 v13

v21 v22 v23

�

connected by B if and only if

they have the same row and column sums and

u12 + u22 = v12 + v22 > 0.
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Graphical Models

G a graph, N-vertices.

d ∈ Z
N , di ≥ 2.

Gives set of margins of d1 × d2 × · · ·× dn array.

C(G) = set of maximal cliques in G.

Definition

Let

AG,d : Zd1×···×dn → Z
k

be the linear map that computes the margins associated to all

C ∈ C(G), of a d1 × · · ·× dn array.
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Example (Row and Column Sums)

1 2

AG,d : Zd1×d2 → Z
d1+d2

(uij)i,j �→ ((
�

j

uij)i , (
�

i

uij)j)

Example (Path)

1 2

3

AG,d : Zd1×d2×d3 → Z
d1×d2+d1×d3

(uijk )i,j,k �→ ((
�

k

uijk )i,j , (
�

j

uijk )i,k )

Example (4-cycle)

1 2

3 4

AG,d : Zd1×d2×d3×d4 → Z
d1×d2+d1×d3+d2×d4+d3×d4

C(G) = {{1, 2}, {1, 3}, {2, 4}, {3, 4}}
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1 2

3

AG,d : Zd1×d2×d3 → Z
d1×d2+d1×d3

(uijk )i,j,k �→ ((
�

k

uijk )i,j , (
�

j

uijk )i,k )

d = (2, 2, 3)

AG,d =

































1 1 1 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1

1 0 0 1 0 0 0 0 0 0 0 0

0 1 0 0 1 0 0 0 0 0 0 0

0 0 1 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 1 0 0

0 0 0 0 0 0 0 1 0 0 1 0

0 0 0 0 0 0 0 0 1 0 0 1

































u = (u111, u112, u113, u121, u122, u123, u211, u212, u213, u221, u222, u223)
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Separating Moves (Conditional Independence)

Let A, B, C partition V (G) such that C separates A and B in G.

Get moves

eiAiB iC + ejAjB iC − eiAjB iC − ejAiB iC

where iA, jA ∈
�

t∈A[dt ], iB, jB ∈
�

t∈B[dt ], iC ∈
�

t∈C [dt ] in

kerZ AG,d .

These moves naturally generalize

�

1 −1

−1 1

�

for 2-way tables.

CI(G) is set of all separating moves.

Example (4-cycle)

1 2

3 4

ei1i2i3i4 + ej1i2i3j4 − ei1i2i3j4 − ej1i2i3i4

ei1i2i3i4 + ei1j2j3i4 − ei1i2j3i4 − ei1j2i3i4
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Which Fibers Do CI(G) Moves Connect?

Proposition (Hammersley-Clifford, Besag (1974))

CI(G) spans kerZ AG,d for all G.

Theorem (Dobra (2002), Geiger, Meek, Sturmfels (2006))

Separating moves CI(G) are a Markov basis for AG,d if and only if G is

a chordal graph.

Problem

1 Which fibers A−1
G,d [b] are connected by CI(G) for other graphs?

2 What is the primary decomposition of ICI(G)?
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Computational Results

Theorem (Kahle-Rauh-S (2012))

Let #V (G) = n ≤ 5, di = 2 for all i . Then

ICI(G) is radical.

A−1
G,d [b]CI(G) is connected if b is in the interior of the marginal cone.

A−1
G,d [b]CI(G) is connected if b is positive (except for G = K2,3).

Every prime component IB of the form PS = �pi : i ∈ S�+ IAS
.

Form vector u
S
:=

�

i /∈S ei .

Check if Au
S

is on boundary of marginal cone for all prime

components.

If so B has interior point property.
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2 × 3 tables

B =

��

1 −1 0

−1 1 0

�

,

�

0 1 −1

0 −1 1

��

IB =

��

�

�

�

p11 p12

p21 p22

�

�

�

�

,

�

�

�

�

p12 p13

p22 p23

�

�

�

�

�

= IA ∩ �p21, p22�

Analyze monomial ideal PS = �p21, p22�

u
S
=

�

1 0 1

1 0 1

�

u
S

has a zero column sum

⇒ all fibers with positive margins (row and column sums) are

connected.
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Theoretical Results

Proposition (Kahle-Rauh-S (2012))

If G = G1#G2 is a clique sum, then

If ICI(G1) and ICI(G2) radical, so is ICI(G).

If G1 and G2 satisfy interior point property, so does G.

If G1 and G2 satisfy positive margins property, so does G.

+ =

Theorem (Kahle-Rauh-S (2012))

1 For cycle Cn, ICI(Cn) is radical, when di = 2 for all i .

2 For K2,n with d1 = d2 = 2, ICI(K2,n) is radical.

3 Interior point property holds in both situations.
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Proof Ideas

Find minimal primes for ICI(G). All binomial ideals.

Let J =
�

ICI(G) = IAG,d
∩ ∩k

i=1Pi .

Let u, v such that AG,du = AG,dv , so pu − pv ∈ IA.

Connect u and v using Markov basis moves of AG,d .

Show that pu − pv ∈ Pi for all i , implies we can shortcut moves

with CI(G) moves.

Deduce that J = ICI(G).

Depends on having Markov basis of AG,d , which is obtained in

these cases via toric fiber product. (Engström, Kahle, S 2011)
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Questions

Question

Is ICI(G) radical for all G, d?

Does interior point property hold for all G, d?

Theorem

If there are n − 2 mutually orthogonal d � × d � latin squares, then for

any 2-connected, triangle free graph on G nodes, and di = d � for all i ,

the interior point property does not hold for (G, d).

For C4 and d = (3, 3, 3, 3) gives failure of interior point property.

Radicality fails for K3,3 and d = (2, 2, 2, 2, 2, 2).
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Summary

Many statistical problems require the construction of random

walks over the lattice points in a polytope.

A Markov basis provides connectivity for all b.

If Markov basis too hard to compute, can ask: Which fibers are

connected by a “natural” set of moves?

Binomial primary decomposition gives information about

connectivity of fibers with subset of Markov basis.

Computational and theoretical advances allow us to make

progress on graphical models.
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Problems

Problem

1 2

3 4

1 Let d = (2, 2, 2, 2). Construct the 16 × 16 matrix AC4,d .

2 List the elements of CI(C4)

3 Use 4ti2, Macaulay2, or Singular to compute the Markov basis of

C4.
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