Algebraic Statistics Tutorial I

Seth Sullivant

North Carolina State University
July 22, 2012

Main Point of This Tutorial

- Many statistical models are described by (semi)-algebraic constraints on a natural parameter space.
- Generators of the vanishing ideal can be useful for constructing algorithms or analyzing properties of statistical model.
- Two Examples
- Phylogenetic Algebraic Geometry
- Sampling Contingency Tables

Model-Based Phylogenetics

- Use a probabilistic model of mutations
- Parameters for the model are the combinatorial tree T, and rate parameters for mutations on each edge
- Models give a probability for observing a particular aligned collection of DNA sequences

```
Human: ACCGTGCAACGTGAACGA
Chimp: ACGTTGCAAGGTAAACGA
Gorilla: ACCGTGCAACGTAAACTA
```

- Assuming site independence, data is summarized by empirical distribution of columns in the alignment.
- e.g. $\hat{p}(A A A)=\frac{6}{18}, \hat{p}(C G C)=\frac{2}{18}$, etc.
- Use empirical distribution and test statistic to find tree best explaining data

Suppose a gene has two alleles, a and A. If allele a occurs in the population with frequency θ (and A with frequency $1-\theta$) and these alleles are in Hardy-Weinberg equilibrium, the genotype frequencies are

$$
\mathrm{P}(X=a a)=\theta^{2}, \mathrm{P}(X=a A)=2 \theta(1-\theta), \mathrm{P}(X=A A)=(1-\theta)^{2}
$$

The model of Hardy-Weinberg equilibrium is the set

Phylogenetics

Problem
Given a collection of species, find the tree that explains their history.

- Data consists of aligned DNA sequences from homologous genes
Human: . . ACCGTGCAACGTGAACGA. . .
Chimp:
Gorilla: . . . ACCTTGGAAGGTAAACGA. .

Phylogenetic Models

- Assuming site independence:
- Phylogenetic Model is a latent class graphical model
- Vertex $v \in T$ gives a random variable $X_{v} \in\{\mathrm{~A}, \mathrm{C}, \mathrm{G}, \mathrm{T}\}$
- All random variables corresponding to internal nodes are latent

$P\left(x_{1}, x_{2}, x_{3}\right)=\sum_{y_{1}} \sum_{y_{2}} P\left(y_{1}\right) P\left(y_{2} \mid y_{1}\right) P\left(x_{1} \mid y_{1}\right) P\left(x_{2} \mid y_{2}\right) P\left(x_{3} \mid y_{2}\right)$

Phylogenetic Models

- Assuming site independence:
- Phylogenetic Model is a latent class graphical model
- Vertex $v \in T$ gives a random variable $X_{v} \in\{\mathrm{~A}, \mathrm{C}, \mathrm{G}, \mathrm{T}\}$
- All random variables corresponding to internal nodes are latent

$$
p_{i_{1} i_{2} i_{3}}=\sum_{j_{1}} \sum_{j_{2}} \pi_{j_{1}} a_{j_{2}, j_{1}} b_{i_{1}, j_{1}} c_{i_{2}, j_{2}} d_{i_{3}, j_{2}}
$$

Phylogenetic Varieties and Phylogenetic Invariants

- Let $\mathbb{R}[p]:=\mathbb{R}\left[p_{i_{1} \ldots i_{n}}: i_{1} \cdots i_{n} \in\{A, C, G, T\}^{n}\right]$

Definition

Let

$$
I_{T}:=\left\langle f \in \mathbb{R}[p]: f(p)=0 \text { for all } p \in \mathcal{M}_{T}\right\rangle \subseteq \mathbb{R}[p] .
$$

I_{T} is the ideal of phylogenetic invariants of T.
Let

$$
V_{T}:=\left\{p \in \mathbb{R}^{4^{n}}: f(p)=0 \text { for all } f \in I_{T}\right\} .
$$

V_{T} is the phylogenetic variety of T.

- Note that $\mathcal{M}_{T} \subset V_{T}$.
- Since \mathcal{M}_{T} is image of a polynomial map $\operatorname{dim} \mathcal{M}_{T}=\operatorname{dim} V_{T}$.

Splits and Phylogenetic Invariants

Definition

A split of a set is a bipartition $A \mid B$. A split $A \mid B$ of the leaves of a tree T is valid for T if the induced trees $\left.T\right|_{A}$ and $\left.T\right|_{B}$ do not intersect.

Algebraic Perspective on Phylogenetic Models

Once we fix a tree T and model structure, we get a map $\phi^{T}: \Theta \rightarrow \mathbb{R}^{4^{n}}$.

- $\Theta \subseteq \mathbb{R}^{d}$ is a parameter space of numerical parameters (transition matrices associated to each edge).
- The map ϕ^{T} is given by polynomial functions of the parameters.
- For each $i_{1} \ldots i_{n} \in\{A, C, G, T\}^{n}, \phi_{i_{1} \ldots i_{n}}^{T}(\theta)$ gives the probability of the column $\left(i_{1}, \ldots, i_{n}\right)^{\prime}$ in the alignment for the particular parameter choice θ.

$$
\phi_{i_{1} i_{2} j_{3}}^{T}(\pi, a, b, c, d)=\sum_{j_{1}} \sum_{j_{2}} \pi_{j_{1}} a_{j_{2}, j_{1}} b_{i_{1}, j_{1}} c_{i_{2}, j_{2}} d_{i_{3}, j_{2}}
$$

- The phylogenetic model is the set $\mathcal{M}_{T}=\phi^{T}(\Theta) \subseteq \mathbb{R}^{4^{n}}$.

$$
p_{\text {lmno }}=\sum_{i=1}^{4} \sum_{j=1}^{4} \sum_{k=1}^{4} \pi_{i} a_{i j} b_{i k} c_{j l} d_{j m} e_{k n} f_{k o}
$$

$$
=\sum_{i=1}^{4} \pi_{i}\left(\left(\sum_{j=1}^{4} a_{i j} c_{j l} d_{j m}\right) \cdot\left(\sum_{k=1}^{4} b_{i k} e_{k n} f_{k o}\right)\right)
$$

$$
\Longrightarrow \quad \operatorname{rank}\left(\begin{array}{cccc}
p_{1111} & p_{1112} & \cdots & p_{1144} \\
p_{1211} & p_{1212} & \cdots & p_{1244} \\
\vdots & \vdots & \ddots & \vdots \\
p_{4411} & p_{4412} & \cdots & p_{4444}
\end{array}\right) \leq \mathbf{4}
$$

2-way Flattenings and Matrix Ranks

$$
\begin{aligned}
p_{i j k l}= & \mathrm{P}\left(X_{1}=i, X_{2}=j, X_{3}=k, X_{4}=l\right) \\
\operatorname{Flat}_{12 \mid 34}(P) & =\left(\begin{array}{ccccc}
p_{A A A A} & p_{A A A C} & p_{A A A G} & \cdots & p_{A A T T} \\
p_{A C A A} & p_{A C A C} & p_{A C A G} & \cdots & p_{A C T T} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
p_{\text {TTAA }} & p_{\text {TTAC }} & p_{\text {TTAG }} & \cdots & p_{T T T T}
\end{array}\right)
\end{aligned}
$$

Proposition

Let $P \in \mathcal{M}_{T}$.

- If $A \mid B$ is a valid split for T, then $\operatorname{rank}\left(\operatorname{Flat}_{A \mid B}(P)\right) \leq 4$. Invariants in I_{T} are subdeterminants of $\operatorname{Flat}_{A \mid B}(P)$.
- If $C \mid D$ is not a valid split for T, then generically $\operatorname{rank}\left(\right.$ Flat $\left._{C \mid D}(P)\right)>4$.

Phylogenetic Algebraic Geometry is the study of the phylogenetic varieties and ideals V_{T} and I_{T}.

- Using Phylogenetic Invariants to Reconstruct Trees
- Identifiability of Phylogenetic Models
- Interesting Math- Useful in Other Problems

Performance of Invariants Methods in Simulations

- Huelsenbeck (1995) did a systematic simulation comparison of 26 different methods of constructing a phylogenetic tree on 4 leaf trees. Invariant-based methods did poorly.
- HOWEVER... Huelsenbeck only used linear invariants.
- Casanellas, Fernandez-Sanchez (2006) redid these simulations using a generating set of the phylogenetic ideal I_{T}. Phylogenetic invariants become comparable to other methods.
- For the particular model studied in Casanellas,

Fernandez-Sanchez (2006) for a tree with 4 leaves, the ideal I_{T} has 8002 generators.

$$
f_{T}:=\sum_{f \in \mathcal{F}_{T}}|f|
$$

is a sum of 8002 terms.

- Major work to overcome combinatorial explosion for larger trees.

Geometric Perspective on Identifiability

Definition

The unrooted tree parameter T in a phylogenetic model is identifiable if for all
$p \in \mathcal{M}_{T}$
there does not exist another $T^{\prime} \neq T$ such that

$$
p \in \mathcal{M}_{T^{\prime}}
$$

Generic Identifiability

Definition

The tree parameter in a phylogenetic model is generically identifiable if for all n-leaf trees with $T \neq T^{\prime}$,

$$
\operatorname{dim}\left(\mathcal{M}_{T} \cap \mathcal{M}_{T^{\prime}}\right)<\min \left(\operatorname{dim}\left(\mathcal{M}_{T}\right), \operatorname{dim}\left(\mathcal{M}_{T^{\prime}}\right)\right)
$$

Definition

A phylogenetic invariant $f \in I_{T}$ is phylogenetically informative if there is some other tree T^{\prime} such that $f \notin I_{T^{\prime}}$.

- Idea of Cavender-Felsenstein (1987), Lake (1987): Evaluate phylogenetically informative phylogenetic invariants at empirical distribution \hat{p} to reconstruct phylogenetic trees

Proposition

For each n-leaf trivalent tree T, let $\mathcal{F}_{T} \subseteq I_{T}$ be a set of phylogenetic invariants such that, for each $T^{\prime} \neq T$, there is an $f \in \mathcal{F}_{T}$, such that $f^{\prime} \notin I_{T^{\prime}}$.
Let $f_{T}:=\sum_{f \in \mathcal{F}_{T}}|f|$.
Then for generic $p \in \cup \mathcal{M}_{T}, f_{T}(p)=0$ if and only if $p \in \mathcal{M}_{T}$.

Identifiability of Phylogenetic Models

Definition

A parametric statistical model is identifiable if it gives 1-to-1 map from parameters to probability distributions.

- "Is it possible to infer the parameters of the model from data?"
- Identifiability guarantees consistency of statistical methods (ML)
- Two types of parameters to consider for phylogenetic models:
- Numerical parameters (transition matrices)
- Tree parameter (combinatorial type of tree)

Proposition

Let \mathcal{M}_{0} and \mathcal{M}_{1} be two algebraic models. If there exist phylogenetically informative invariants f_{0} and f_{1} such that

$$
f_{i}(p)=0 \text { for all } p \in \mathcal{M}_{i} \text {, and } f_{i}(q) \neq 0 \text { for some } q \in \mathcal{M}_{1-i} \text {, then }
$$

$$
\operatorname{dim}\left(\mathcal{M}_{0} \cap \mathcal{M}_{1}\right)<\min \left(\operatorname{dim} \mathcal{M}_{0}, \operatorname{dim} \mathcal{M}_{1}\right)
$$

Phylogenetic Mixture Models

- Basic phylogenetic model assume same parameters at every site
- This assumption is not accurate within a single gene
- Some sites more important: unlikely to change
- Tree structure may vary across genes

- Leads to mixture models for different classes of sites
- $\mathcal{M}(T, r)$ denotes a same tree mixture model with underlying tree T and r classes of sites

Identifiability Questions for Mixture Models

Question

For fixed number of trees r, are the tree parameters T_{1}, \ldots, T_{r}, and rate parameters of each tree (generically) identified in phylogenetic mixture models?

- $r=1$ (Ordinary phylogenetic models)

Most models are identifiable on $\geq 2,3,4$ leaves. (Rogers, Chang, Steel, Hendy, Penny, Székely, Allman, Rhodes, Housworth, ...)

- $r>1 T_{1}=T_{2}=\cdots=T_{r}$ but no restriction on number of trees Not identifiable (Matsen-Steel, Stefankovic-Vigoda)
- $r>1, T_{i}$ arbitrary

Not identifiable (Mossel-Vigoda)

How to Construct Phylogenetic Invariants?

Theorem (Sturmfels-S, Allman-Rhodes, Casanellas-S, Draisma-Kuttler)
Consider "nice" algebraic phylogenetic model. The problem of computing phylogenetic invariants for any tree T can be reduced to the same problem for star trees $K_{1, k}$.

Proof Ideas.

- Phylogenetic invariants from flattenings
- Tensor rank (Kruskal's Theorem) [Allman-Matias-Rhodes 2009]
- Elementary tree combinatorics
- Solving tree and numerical parameter identifiability at the same time
- The ideal I_{T} generated by local contributions from each $K_{1, k}$, plus flattening invariants from edges.
- The varieties $V_{K_{1, k}}$ are interesting classical algebraic varieties:
- toric varieties
- secant varieties
- $\operatorname{Sec}^{4}\left(\mathbb{P}^{3} \times \mathbb{P}^{3} \times \mathbb{P}^{3}\right)$

Group-based models

$$
\left(\begin{array}{ll}
\alpha & \beta \\
\beta & \alpha
\end{array}\right)\left(\begin{array}{llll}
\alpha & \beta & \beta & \beta \\
\beta & \alpha & \beta & \beta \\
\beta & \beta & \alpha & \beta \\
\beta & \beta & \beta & \alpha
\end{array}\right)\left(\begin{array}{llll}
\alpha & \beta & \gamma & \gamma \\
\beta & \alpha & \gamma & \gamma \\
\gamma & \gamma & \alpha & \beta \\
\gamma & \gamma & \beta & \alpha
\end{array}\right)\left(\begin{array}{llll}
\alpha & \beta & \gamma & \delta \\
\beta & \alpha & \delta & \gamma \\
\gamma & \delta & \alpha & \beta \\
\delta & \gamma & \beta & \alpha
\end{array}\right)
$$

- Random variables in finite abelian group G.
- Transitions probabilities satisfy $\operatorname{Prob}(X=g \mid Y=h)=f(g+h)$.
- This means that the formula for $\operatorname{Prob}\left(X_{1}=g_{1}, \ldots, X_{n}=g_{n}\right)$ is a convolution (over G^{n}).
- Apply discrete Fourier transform to turn convolution into a product.

Theorem (Hendy-Penny 1993, Evans-Speed 1993)
In the Fourier coordinates, a group-based model is parametrized by monomial functions in terms of the Fourier parameters.
In particular, the CFN model is a toric variety.

Gluing Two Trees at a Leaf

- Let $T=T_{1} \# T_{2}$, tree obtained by joining two trees at a leaf.
- Each ring $\mathbb{C}[p] / T_{T_{1}}, \mathbb{C}[p] / T_{T_{2}}$ is invariant under action of group $\mathcal{G}=\mathrm{Gl}_{r}(\mathbb{C})^{k}$ acting on the glue leaves.

Theorem (Draisma-Kuttler)

- $\mathbb{C}[p] / I_{T} \cong\left(\mathbb{C}[p] / I_{T_{1}} \otimes \mathbb{C} \mathbb{C}[p] / I_{T_{2}}\right)^{G}$
- $V_{T}=\left(V_{T_{1}} \times V_{T_{2}}\right) / / \mathcal{G}$ (GIT quotient)
- Actions of individual factors $\left(\mathrm{Gl}_{r}(\mathbb{C})\right)$ do no interact.
- Use Reynolds operator and first fundamental theorem of CIT.
- Phylogenetic models are fundamentally algebraic-geometric objects.
- Algebraic perspective is useful for:
- Developing new construction algorithms
- Proving theorems about identifiability (currently best available for mixture models)
- Leads to interesting new mathematics, useful for other problems
- Long way to go: Your Help Needed!

Equations for the CFN Model

Theorem (Sturmfels-S 2005)

For any tree T, the toric ideal I_{T} for the CFN model is generated by degree 2 determinantal equations.

Fourier coordinates:
$q_{\text {lmno }}=\sum_{r, s, t, u \in\{0,1\}}(-1)^{r l+s m+t n+u 0} p_{\text {rstu }}$
I_{T} generated by 2×2 minors of:
$\left.\begin{array}{l}\left(\begin{array}{llll}q_{0000} & q_{0001} & q_{0010} & q_{0011} \\ q_{1100} & q_{1101} & q_{1110} & q_{1111}\end{array}\right) \quad\left(\begin{array}{lll}q_{0000} & q_{0011} \\ q_{0100} & q_{0111} \\ q_{1000} & q_{1011} \\ q_{1100} & q_{1111}\end{array}\right) \quad\left(\begin{array}{lll}q_{0001} & q_{0010} \\ q_{0101} & q_{0110} \\ q_{1000} & q_{0101} & q_{0110} \\ q_{1001} & q_{0111} \\ q_{1010} & q_{1011}\end{array}\right) \\ q_{1101}\end{array} q_{1110}\right)$

Gluing more complex graphs

- Still a group action $\left(\mathrm{Gl}_{r}(\mathbb{C})^{k}\right)$.
- But factors are not acting independently.
- $\mathbb{C}[p] / I_{G} \neq\left(\mathbb{C}[p] / I_{G_{1}} \otimes \mathbb{C} \mathbb{C}[p] / I_{G_{2}}\right)^{\mathcal{G}}$
- $\mathbb{C}[p] / I_{G}$ generated by degree 1 part of $\left(\mathbb{C}[p] / I_{G_{1}} \otimes_{\mathbb{C}} \mathbb{C}[p] / I_{G_{2}}\right)^{\mathcal{G}}$ (toric fiber product if $r=1$)

Theorem (Engström-Kahle-S)

Can determine generators of I_{G} from $I_{G_{1}}$ and $I_{G_{2}}$ if the TFP has "Iow codimension".

- Useful for other problems in algebraic statistics.

Problems

Theorem (Allman-Rhodes 2006)
Let T be a trivalent tree with n leaves, and consider the general Markov model on binary characters. The phylogenetic ideal I_{T} has generating set

$$
\bigcup_{A \mid B \in \Sigma(T)}\left\{3 \times 3 \text { minors of } \text { Flat }_{A \mid B}(P)\right\}
$$

where $\Sigma(T)$ is the set of all valid splits on T. Note that P is a $2 \times 2 \times \cdots \times 2$, n-way tensor.

Problem

For the 5 leaf tree at the right and write down all the matrices Flat ${ }_{A \mid B}(P)$ that are needed in the previous theorem.

E. Allman, C. Matias, J. Rhodes. Identifiability of parameters in latent structure models with many observed variables. Annals of Statistics, 37 no.6A (2009) 3099-3132.
M. Casanellas, J. Fernandez-Sanchez. Performance of a new invariants method on homogeneous and non-homogeneous quartet trees, Molecular Biology and Evolution, 24(1):288-293, 2006.
J. Cavender, J. Felsenstein. Invariants of phylogenies: a simple case with discrete states. Journal of Classification 4 (1987) 57-71.
J. Draisma, J Kuttler. On the ideals of equivariant tree models, Mathematische Annalen 344(3):619-644, 2009.
A. Engström, T. Kahle, S. Sullivant. Multigraded commutative algebra of graph decompositions. 1102.2601
S. Evans and T. Speed. Invariants of some probability models used in phylogenetic inference. Annals of Statistics 21 (1993) 355-377.
M. Hendy, D. Penny. Spectral analysis of phylogenetic data. J. Classification 10 (1993) 5-24.
J. Huelsenbeck. Performance of phylogenetic methods in simulation. Systematic Biology 42 no. 1 (1995) 17-48.
. J. Lake. A rate-independent technique for analysis of nucleaic acid sequences: evolutionary parsimony. Molecular Biology and Evolution 4 (1987) 167-191.
R. FA. Matsen and M. Steel. Phylogenetic mixtures on a single tree can mimic a tree of another topology. Systematic Biology, 2007
E. Mossel and E. Vigoda Phylogenetic MCMC Are Misleading on Mixtures of Trees. Science 309, 2207-2209 (2005)
J. Rhodes, S. Sullivant. Identifiability of large phylogenetic mixture models. To appear Bulletin of Mathermatical Biology, 2011. 1011.4134
D. Stefankovic and E. Vigoda. Pittalls of Heterogeneous Processes for Phylogenetic Reconstruction Systematic Biology 56(1): 113-124, 2007.
B. Sturmels, S. Sullivant. Toric ideals of phylogenetic invariants. Journal of Computational Biology 12 (2005) 204-228

Algebraic Statistics Tutorial II

Seth Sullivant
North Carolina State University
June 10, 2012

Random Walk

allow for a connected random walk over these contingency tables.

Example: 2-way tables

Let $A: \mathbb{Z}^{k_{1} \times k_{2}} \rightarrow \mathbb{Z}^{k_{1}+k_{2}}$ such that

$$
\begin{aligned}
A(u) & =\left(\sum_{j=1}^{m} u_{1 j}, \ldots, \sum_{j=1}^{m} u_{k_{1} j} ; \sum_{i=1}^{k} u_{i 1}, \ldots, \sum_{i=1}^{k} u_{i k_{2}}\right) \\
& =\text { vector of row and column sums of } u
\end{aligned}
$$

$\operatorname{ker}_{\mathbb{Z}}(A)=\left\{u \in \mathbb{Z}^{k_{1} \times k_{2}}\right.$: row and columns sums of u are 0$\}$
Markov basis consists of the $2\binom{k_{1}}{2}\binom{k_{2}}{2}$ moves like:

$$
\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
1 & 0 & -1 & 0 \\
-1 & 0 & 1 & 0
\end{array}\right)
$$

Problem
Generate a random table from the set of all nonnegative $k_{1} \times k_{2}$ integer tables with given row and column sums.

Fisher's Exact Test, Missing Data Problems

Connecting Lattice Points in Polytopes

Definition

- Let $A: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{d}$ a linear transformation, $b \in \mathbb{Z}^{d}$.
- $A^{-1}[b]:=\left\{x \in \mathbb{N}^{n}: A x=b\right\}$ (fiber)
- $\mathcal{B} \subset \operatorname{ker}_{\mathbb{Z}} A$

Let $A^{-1}[b]_{\mathcal{B}}$ be the graph with vertex set $A^{-1}[b]$ and $u--v$ an edge if and only $u-v \in \pm \mathcal{B}$.

Problem

Given A and b, find finite $\mathcal{B} \subseteq \operatorname{ker}_{\mathbb{Z}} A$ such that $A^{-1}[b]_{\mathcal{B}}$ is connected.

Definition

If $\mathcal{B} \subseteq \operatorname{ker}_{\mathbb{Z}} A$ is a set such that $A^{-1}[b]_{\mathcal{B}}$ is connected for all b, then \mathcal{B} is a Markov basis for A.

3-way tables

Let $A: \mathbb{Z}^{k_{1} \times k_{2} \times k_{3}} \rightarrow \mathbb{Z}^{k_{1} \times k_{2}+k_{1} \times k_{3}+k_{2} \times k_{3}}$ be the linear transformation such that

$$
A(u)=\left(\left(\sum_{i_{3}} u_{i_{1} i_{2} i_{3}}\right)_{i_{1}, i_{2}} ;\left(\sum_{i_{2}} u_{i_{1} i_{2} i_{3}}\right)_{i_{1} i_{3}} ;\left(\sum_{i_{1}} u_{i_{1} i_{2} i_{3}}\right)_{i_{2}, i_{3}}\right)
$$

$=$ all 2-way margins of 3-way table u
$=$ all "line sums" of u.
Markov basis depends on k_{1}, k_{2}, k_{3}, contains moves like:

$$
\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right)\left(\begin{array}{cc}
-1 & 1 \\
1 & -1
\end{array}\right)
$$

but also non-obvious moves like:

$$
\left(\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
-1 & 1 & 0 \\
0 & 0 & 0 \\
1 & -1 & 0
\end{array}\right)\left(\begin{array}{ccc}
0 & 0 & 0 \\
1 & 0 & 0 \\
-1 & 0 & -1 \\
1
\end{array}\right)\left(\begin{array}{ccc}
0 & -1 & 1 \\
0 & 0 & 0 \\
0 & 1 & -1
\end{array}\right)\left(\begin{array}{ccc}
0 & 1 & -1 \\
0 & -1 & -1 \\
0 & -1 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

Fundamental Theorem of Markov Bases

Definition

Let $A: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{d}$. The toric ideal I_{A} is the ideal

$$
\left\langle p^{u}-p^{v}: u, v \in \mathbb{N}^{n}, A u=A v\right\rangle \subset \mathbb{K}\left[p_{1}, \ldots, p_{n}\right],
$$

$$
\text { where } p^{u}=p_{1}^{u_{1}} p_{2}^{u_{2}} \cdots p_{n}^{u_{n}} .
$$

Theorem (Diaconis-Sturmfels 1998)

The set of moves $\mathcal{B} \subseteq \operatorname{ker}_{\mathbb{Z}} A$ is a Markov basis for A if and only if the set of binomials $\left\{p^{b^{+}}-p^{b^{-}}: b \in \mathcal{B}\right\}$ generates I_{A}.

$$
\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
1 & 0 & -1 & 0 \\
-1 & 0 & 1 & 0
\end{array}\right) \quad \rightarrow \quad p_{21} p_{33}-p_{23} p_{31}
$$

2-way tables: Independence

$$
\begin{gathered}
\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
1 & 0 & -1 & 0 \\
-1 & 0 & 1 & 0
\end{array}\right) \longrightarrow p_{21} p_{33}-p_{23} p_{31}=\left|\begin{array}{cc}
p_{21} & p_{23} \\
p_{31} & p_{33}
\end{array}\right| \\
I_{A}=\left\langle 2 \times 2 \text { minors of }\left(\begin{array}{cccc}
p_{11} & p_{12} & \cdots & p_{1 k_{2}} \\
p_{21} & p_{22} & \cdots & p_{2 k_{2}} \\
\vdots & \vdots & \ddots & \vdots \\
p_{k_{1} 1} & p_{k_{1} 2} & \cdots & p_{k_{1} k_{2}}
\end{array}\right)\right\rangle \\
V_{A}=V\left(I_{A}\right)=\left\{P \in \mathbb{R}^{k_{1} \times k_{2}}: \operatorname{rank} P \leq 1\right\} \\
\mathcal{M}_{A}=V_{A} \cap \Delta_{k_{1} k_{2}}=\mathcal{M}_{X_{1} \Perp X_{2}}
\end{gathered}
$$

"No Hope" Theorem

Theorem (De Loera-Onn (2006))

- Every integer vector appears as part of a minimal Markov basis element for $3 \times k_{2} \times k_{3}$ tables (with fixed 2-way margins).
- In particular, minimal Markov basis elements for 3-way tables can have arbitrarily large entries and arbitrarily large 1-norm.

Example ($3 \times 4 \times 6$-tables)

For $3 \times 4 \times 6$ tables, minimal Markov basis has 355950 elements.

- Largest element has 1-norm 28.

Toric Varieties = Log-linear Models

Definition

The variety $V_{A}=V\left(I_{A}\right)$ is a toric variety. The statistical model $\mathcal{M}_{A}=V\left(I_{A}\right) \cap \Delta_{m}$ is a log-linear model.

- $\mathcal{M}_{A}=\left\{p \in \Delta_{m}: \log p \in \operatorname{rowspan} A\right\}$.
- Fisher's exact test: Does the data \mathbf{u} fit the model \mathcal{M}_{A} ?

Computing Markov Bases

- Software

- 4ti2 www.4ti2.de
- Macaulay2 (4ti2 interface)
http://www.math.uiuc.edu/Macaulay2/
- Singular (toric package) http://www. singular.uni-kl.de/
- Theory
- Gluing Results
- Finiteness Theorems
- Special Configurations

Which Fibers are Connected?

Problem

Let $\mathcal{B} \subseteq \operatorname{ker}_{\mathbb{Z}} A$. For which b is $A^{-1}[b]_{\mathcal{B}}$ connected? When do $u, v \in A^{-1}[b]$ belong to the same component of $A^{-1}[b]_{\mathcal{B}}$?

Example (2×3)

$$
\mathcal{B}=\left\{\left(\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 1 & 0
\end{array}\right), \quad\left(\begin{array}{ccc}
0 & 1 & -1 \\
0 & -1 & 1
\end{array}\right)\right\}
$$

Enter Commutative Algebra

Let $\mathbb{K}[p]:=\mathbb{K}\left[p_{1}, \ldots, p_{n}\right]$. To each $m \in \mathcal{B}$ associate a binomial

$$
p^{m^{+}}-p^{m^{-}} \in \mathbb{K}[p]
$$

where $m=m^{+}-m^{-}, p^{m}=p_{1}^{m_{1}} \cdots p_{n}^{m_{n}}$.

Proposition

Let $\mathcal{B} \subseteq \operatorname{ker}_{\mathbb{Z}} A$. Then $u, v \in A^{-1}[b]$ are in the same component of $A^{-1}[b]_{\mathcal{B}}$ if and only if

$$
p^{u}-p^{v} \in I_{\mathcal{B}}:=\left\langle p^{m^{+}}-p^{m^{-}}: m \in \mathcal{B}\right\rangle .
$$

Theorem (Diaconis-Sturmfels (1998))

A set of moves $\mathcal{B} \subseteq \operatorname{ker}_{\mathbb{Z}} A$ is a Markov basis if and only if

$$
I_{\mathcal{B}}=I_{A}:=\left\langle p^{u}-p^{v}: u, v \in \mathbb{N}^{n}, A u=A v\right\rangle .
$$

2×3 tables

$$
\left.\begin{array}{c}
\mathcal{B}=\left\{\left(\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 1 & 0
\end{array}\right), \quad\left(\begin{array}{ccc}
0 & 1 & -1 \\
0 & -1 & 1
\end{array}\right)\right\} \\
I_{\mathcal{B}}=\langle | \begin{array}{ll}
p_{11} & p_{12} \\
p_{21} & p_{22}
\end{array}\left|,\left|\begin{array}{ll}
p_{12} & p_{13} \\
p_{22} & p_{23}
\end{array}\right|\right\rangle \\
=\langle | \begin{array}{ll}
p_{11} & p_{12} \\
p_{21} & p_{22}
\end{array}\left|,\left|\begin{array}{ll}
p_{12} & p_{13} \\
p_{22} & p_{23}
\end{array}\right|,\left|\begin{array}{ll}
p_{11} & p_{13} \\
p_{21} & p_{23}
\end{array}\right|\right\rangle \cap\left\langle p_{21}, p_{22}\right\rangle \\
=I_{A} \cap\left\langle p_{21}, p_{22}\right\rangle
\end{array}\right] \begin{aligned}
& \left(\begin{array}{lll}
u_{11} & u_{12} & u_{13} \\
u_{21} & u_{22} & u_{23}
\end{array}\right)\left(\begin{array}{lll}
v_{11} & v_{12} & v_{13} \\
v_{21} & v_{22} & v_{23}
\end{array}\right) \text { connected by } \mathcal{B} \text { if and only if } \\
& \text { o they have the same row and column sums and } \\
& \text { o } u_{12}+u_{22}=v_{12}+v_{22}>0 .
\end{aligned}
$$

Example (Row and Column Sums)

$A_{G, d}: \mathbb{Z}^{d_{1} \times d_{2}} \rightarrow \mathbb{Z}^{d_{1}+d_{2}}$
©

$$
\left(u_{i j}\right)_{i, j} \mapsto\left(\left(\sum_{j} u_{i j}\right)_{i},\left(\sum_{i} u_{i j}\right)_{j}\right)
$$

Example (Path)

$$
\begin{gathered}
A_{G, d}: \mathbb{Z}^{d_{1} \times d_{2} \times d_{3}} \rightarrow \mathbb{Z}^{d_{1} \times d_{2}+d_{1} \times d_{3}} \\
\left(u_{i j k}\right)_{i, j, k} \mapsto\left(\left(\sum_{k} u_{i j k}\right)_{i, j},\left(\sum_{j} u_{i j k}\right)_{i, k}\right)
\end{gathered}
$$

Example (4-cycle)

Lattice Walks and Primary Decomposition (Diaconis-Eisenbud-Sturmfels 1998)

- Decompose ideal $I_{\mathcal{B}}=\cap_{i} I_{i}$.
- $p^{u}-p^{v} \in I_{\mathcal{B}} \Leftrightarrow p^{u}-p^{v} \in I_{i}$ for all i.
- Hope that ideal I_{i} are easier to analyze.

Theorem (Eisenbud-Sturmfels 1996)

Every binomial ideal has a binomial primary decomposition.

- Dickenstein-Matusevich-Miller, Kahle-Miller (Mesoprimary decomposition)
- Algorithms implemented in binomials.m2 (Kahle 2010)

Graphical Models

- G a graph, N-vertices.
- $d \in \mathbb{Z}^{N}, d_{i} \geq 2$.
- Gives set of margins of $d_{1} \times d_{2} \times \cdots \times d_{n}$ array.
- $\mathcal{C}(G)=$ set of maximal cliques in G.

Definition

Let

$$
A_{G, d}: \mathbb{Z}^{d_{1} \times \cdots \times d_{n}} \rightarrow \mathbb{Z}^{k}
$$

be the linear map that computes the margins associated to all $C \in \mathcal{C}(G)$, of a $d_{1} \times \cdots \times d_{n}$ array.

$$
A_{G, d}: \mathbb{Z}^{d_{1} \times d_{2} \times d_{3}} \rightarrow \mathbb{Z}^{d_{1} \times d_{2}+d_{1} \times d_{3}}
$$

$$
\left(u_{i j k}\right)_{i, j, k} \mapsto\left(\left(\sum_{k} u_{i j k}\right)_{i, j},\left(\sum_{j} u_{i j k}\right)_{i, k}\right)
$$

$$
d=(2,2,3)
$$

$$
A_{G, d}=\left(\begin{array}{cccccccccccc}
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
\hline 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1
\end{array}\right)
$$

$u=\left(u_{111}, u_{112}, u_{113}, u_{121}, u_{122}, u_{123}, u_{211}, u_{212}, u_{213}, u_{221}, u_{222}, u_{223}\right)$

- Let A, B, C partition $V(G)$ such that C separates A and B in G.
- Get moves

$$
e_{i_{A} i_{B} i_{C}}+e_{j_{A} j_{B} i_{C}}-e_{i_{A} /_{B} i_{C}}-e_{j_{A} i_{B} i_{C}}
$$

where $i_{A}, j_{A} \in \prod_{t \in A}\left[d_{t}\right], i_{B}, j_{B} \in \prod_{t \in B}\left[d_{t}\right], i_{C} \in \prod_{t \in C}\left[d_{t}\right]$ in $\operatorname{ker}_{\mathbb{Z}} A_{G, d}$.

- These moves naturally generalize $\left(\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right)$ for 2-way tables.
- $C I(G)$ is set of all separating moves.

Example (4-cycle)

$e_{i_{1} i_{2} i_{3} i_{4}}+e_{j_{1} i_{2} i_{3} i_{4}}-e_{i_{1} i_{2} i_{3} j_{4}}-e_{j_{1} i_{2} i_{3} i_{4}}$

$$
e_{i_{1} i_{2} i_{3} i_{4}}+e_{i_{1} / 2 / 3 i_{4}}-e_{i_{1} i_{2} / 3 i_{4}}-e_{i_{1} j_{2} i_{3} i_{4}}
$$

Seth Sullivant (NCSU) Algebraic Slatisitics

Computational Results

Theorem (Kahle-Rauh-S (2012))

Let $\# V(G)=n \leq 5, d_{i}=2$ for all i. Then

- $I_{C I(G)}$ is radical.
- $A_{G, d}^{-1}[b]_{C /(G)}$ is connected if b is in the interior of the marginal cone.
- $A_{G, d}^{-1}[b]_{C /(G)}$ is connected if b is positive (except for $G=K_{2,3}$).
- Every prime component $I_{\mathcal{B}}$ of the form $P_{S}=\left\langle p_{i}: i \in S\right\rangle+I_{A_{S}}$.
- Form vector $u_{\bar{s}}:=\sum_{i \notin S} e_{i}$.
- Check if $A u_{s}$ is on boundary of marginal cone for all prime components.
- If so \mathcal{B} has interior point property.

Theoretical Results

Proposition (Kahle-Rauh-S (2012))
If $G=G_{1} \# G_{2}$ is a clique sum, then

- If $I_{C I\left(G_{1}\right)}$ and $I_{C I\left(G_{2}\right)}$ radical, so is $I_{C I(G)}$.
- If G_{1} and G_{2} satisfy interior point property, so does G.
- If G_{1} and G_{2} satisfy positive margins property, so does G.

Theorem (Kahle-Rauh-S (2012))

(1) For cycle $C_{n}, I_{C I\left(C_{n}\right)}$ is radical, when $d_{i}=2$ for all i.
(2) For $K_{2, n}$ with $d_{1}=d_{2}=2, I_{C I\left(K_{2, n}\right)}$ is radical.
(3) Interior point property holds in both situations.

Proposition (Hammersley-Clifford, Besag (1974)) $C I(G)$ spans $\operatorname{ker}_{\mathbb{Z}} A_{G, d}$ for all G.

Theorem (Dobra (2002), Geiger, Meek, Sturmfels (2006))
Separating moves $C I(G)$ are a Markov basis for $A_{G, d}$ if and only if G is a chordal graph.

Problem

- Which fibers $A_{G, d}^{-1}[b]$ are connected by $C I(G)$ for other graphs?
(2) What is the primary decomposition of $I_{C /(G)}$?

2×3 tables

$$
\begin{gathered}
\mathcal{B}=\left\{\left(\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 1 & 0
\end{array}\right), \quad\left(\begin{array}{ccc}
0 & 1 & -1 \\
0 & -1 & 1
\end{array}\right)\right\} \\
I_{\mathcal{B}}=\langle | \begin{array}{cc}
p_{11} & p_{12} \\
p_{21} & p_{22}
\end{array}\left|,\left|\begin{array}{cc}
p_{12} & p_{13} \\
p_{22} & p_{23}
\end{array}\right|\right\rangle \\
=I_{A} \cap\left\langle p_{21}, p_{22}\right\rangle
\end{gathered}
$$

- Analyze monomial ideal $P_{S}=\left\langle p_{21}, p_{22}\right\rangle$
- $u_{\bar{s}}=\left(\begin{array}{lll}1 & 0 & 1 \\ 1 & 0 & 1\end{array}\right)$
- $u_{\bar{s}}$ has a zero column sum
- \Rightarrow all fibers with positive margins (row and column sums) are connected.

Seth Sullivant (NCSU)
Algebraic Statistics
June 10, 2012 22/28

Proof Ideas

- Find minimal primes for $I_{C I(G)}$. All binomial ideals.
- Let $J=\sqrt{I_{C l(G)}}=I_{A_{G, d}} \cap \cap_{i=1}^{k} P_{i}$.
- Let u, v such that $A_{G, d} u=A_{G, d} v$, so $p^{u}-p^{v} \in I_{A}$.
- Connect u and v using Markov basis moves of $A_{G, d}$.
- Show that $p^{u}-p^{v} \in P_{i}$ for all i, implies we can shortcut moves with $C I(G)$ moves.
- Deduce that $J=I_{C I(G)}$.
- Depends on having Markov basis of $A_{G, d}$, which is obtained in these cases via toric fiber product. (Engström, Kahle, S 2011)

Question

- Is $I_{C_{(G)}}$ radical for all G, d ?
- Does interior point property hold for all G, d ?

Theorem

If there are $n-2$ mutually orthogonal $d^{\prime} \times d^{\prime}$ latin squares, then for any 2-connected, triangle free graph on G nodes, and $d_{i}=d^{\prime}$ for all i, the interior point property does not hold for (G, d).

- For C_{4} and $d=(3,3,3,3)$ gives failure of interior point property. - Radicality fails for $K_{3,3}$ and $d=(2,2,2,2,2,2)$.
- Many statistical problems require the construction of random walks over the lattice points in a polytope.
- A Markov basis provides connectivity for all b.
- If Markov basis too hard to compute, can ask: Which fibers are connected by a "natural" set of moves?
- Binomial primary decomposition gives information about connectivity of fibers with subset of Markov basis.
- Computational and theoretical advances allow us to make progress on graphical models.

References

T. Besag. (1974) Spatial Interaction and the Statistical Analysis of Lattice Systems, Journal of the Royal Statistical Society, Series B, 36 (2), 192 D 236.
J. De Loera, S. Onn. Markov bases of three-way tables are arbitrarily complicated. Journal of Symbolic Computation, 41:173-181, 2006.
P. Diaconis, D. Eisenbud, B. Sturmfels. Lattice walks and primary decomposition, Mathematical Essays in Honor of Gian-Carlo Rota, eds. B. Sagan and R. Stanley, Progress in Mathematics, Vol. 161, Birkhauser, Boston, 1998, pp.
173-193.

- 173-193.
- P. Diaconis and B. Sturméls. Algebraic algorithms for sampling from conditional distributions, Annals of Statistics 26 (1998) 363-397
A. Dickenstein, L. Matusevich, E. Miller. Combinatorics of binomial primary decomposition. 0803.3846
A. Dobra. Markov bases for decomposable graphical models. Bernoulli 9 No. 6,(2003) 1-16.
D. Eisenbud, B. Sturmels. Binomial ideals, Duke Mathematical Journal 84 (1996) 1-45.
A. Engström, T. Kahle, S. Sullivant. Multigraded commutative algebra of graph decompositions. (2011) 1102.2601
D. Geiger, C. Meek, B. Sturmfels. On the toric algebra of graphical models, Annals of Statistics 34 (2006) 1463-1492
T. Kahle, E. Miller. Decompositions of commutative monoid congruences and binomial ideals. arxiv: 1107.4699
T. Kahle, J. Rauh, S. Sullivant. Positive margins and primary decomposition. (2012) 1201.2591
(1) Let $d=(2,2,2,2)$. Construct the 16×16 matrix $A_{C_{4}, d}$.
(2) List the elements of $\mathrm{Cl}\left(C_{4}\right)$
(3) Use 4ti2, Macaulay2, or Singular to compute the Markov basis of C_{4}.

